Namespaces
Variants
Actions

Difference between revisions of "Flag"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(restore reference numbers from printed version)
Line 1: Line 1:
 
''of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405502.png" /> in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405503.png" />-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405504.png" />''
 
''of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405502.png" /> in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405503.png" />-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405504.png" />''
  
A collection of linear subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405505.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405506.png" /> of corresponding dimensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405507.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405508.png" /> (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405509.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055010.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055011.png" />). A flag of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055012.png" /> is called a complete flag or a full flag. Any two flags of the same type can be mapped to each other by some linear transformation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055013.png" />, that is, the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055014.png" /> of all flags of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055015.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055016.png" /> is a homogeneous space of the general linear group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055017.png" />. The unimodular group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055018.png" /> also acts transitively on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055019.png" />. Here the stationary subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055020.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055021.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055022.png" /> (and also in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055023.png" />) is a parabolic subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055024.png" /> (respectively, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055025.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055026.png" /> is a complete flag in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055027.png" />, defined by subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055028.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055029.png" /> is a complete triangular subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055030.png" /> (respectively, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055031.png" />) relative to a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055032.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055033.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055035.png" />. In general, quotient spaces of linear algebraic groups by parabolic subgroups are sometimes called flag varieties. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055036.png" />, a flag of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055037.png" /> is simply an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055038.png" />-dimensional linear subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055040.png" /> is the [[Grassmann manifold|Grassmann manifold]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055041.png" />. In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055042.png" /> is the projective space associated with the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055043.png" />. Every flag variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055044.png" /> can be canonically equipped with the structure of a projective algebraic variety (see ). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055045.png" /> is a real or complex vector space, then all the varieties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055046.png" /> are compact. Cellular decompositions and cohomology rings of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055047.png" /> are known (see , and also [[Bruhat decomposition|Bruhat decomposition]]).
+
A collection of linear subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405505.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405506.png" /> of corresponding dimensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405507.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405508.png" /> (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405509.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055010.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055011.png" />). A flag of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055012.png" /> is called a complete flag or a full flag. Any two flags of the same type can be mapped to each other by some linear transformation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055013.png" />, that is, the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055014.png" /> of all flags of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055015.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055016.png" /> is a homogeneous space of the general linear group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055017.png" />. The unimodular group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055018.png" /> also acts transitively on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055019.png" />. Here the stationary subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055020.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055021.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055022.png" /> (and also in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055023.png" />) is a parabolic subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055024.png" /> (respectively, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055025.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055026.png" /> is a complete flag in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055027.png" />, defined by subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055028.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055029.png" /> is a complete triangular subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055030.png" /> (respectively, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055031.png" />) relative to a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055032.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055033.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055035.png" />. In general, quotient spaces of linear algebraic groups by parabolic subgroups are sometimes called flag varieties. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055036.png" />, a flag of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055037.png" /> is simply an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055038.png" />-dimensional linear subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055040.png" /> is the [[Grassmann manifold|Grassmann manifold]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055041.png" />. In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055042.png" /> is the projective space associated with the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055043.png" />. Every flag variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055044.png" /> can be canonically equipped with the structure of a projective algebraic variety (see [1]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055045.png" /> is a real or complex vector space, then all the varieties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055046.png" /> are compact. Cellular decompositions and cohomology rings of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055047.png" /> are known (see [3], and also [[Bruhat decomposition|Bruhat decomposition]]).
  
 
For references see [[Flag structure|Flag structure]].
 
For references see [[Flag structure|Flag structure]].

Revision as of 08:29, 10 April 2018

of type in an -dimensional vector space

A collection of linear subspaces of of corresponding dimensions , such that (here , ; ). A flag of type is called a complete flag or a full flag. Any two flags of the same type can be mapped to each other by some linear transformation of , that is, the set of all flags of type in is a homogeneous space of the general linear group . The unimodular group also acts transitively on . Here the stationary subgroup of in (and also in ) is a parabolic subgroup of (respectively, of ). If is a complete flag in , defined by subspaces , then is a complete triangular subgroup of (respectively, of ) relative to a basis of such that , . In general, quotient spaces of linear algebraic groups by parabolic subgroups are sometimes called flag varieties. For , a flag of type is simply an -dimensional linear subspace of and is the Grassmann manifold . In particular, is the projective space associated with the vector space . Every flag variety can be canonically equipped with the structure of a projective algebraic variety (see [1]). If is a real or complex vector space, then all the varieties are compact. Cellular decompositions and cohomology rings of the are known (see [3], and also Bruhat decomposition).

For references see Flag structure.

How to Cite This Entry:
Flag. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Flag&oldid=19141
This article was adapted from an original article by D.V. Alekseevskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article