Namespaces
Variants
Actions

Fine topology

From Encyclopedia of Mathematics
Revision as of 10:15, 30 January 2022 by Liuyao (talk | contribs) (fixing spaces)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


in potential theory

The weakest topology in which all superharmonic functions on $ \mathbf R ^ {n} $ are continuous. Objects related to the fine topology are described as "fine" , "finely" , etc.

The notion of fine topology is closely connected with that of a thin set (cf. also Thinness of a set). The fine topology is stronger that the usual Euclidean topology on $ \mathbf R ^ {n} $, i.e. every Euclidean-open set is finely open. A fine neighbourhood of a point $ x _ {0} \in \mathbf R ^ {n} $ is a set $ V ( x _ {0} ) $ such that $ x _ {0} \in V ( x _ {0} ) $ and such that the complement $ {C V ( x _ {0} ) } $ is a thin set at $ x $. The finely-open sets are unions of pre-images under mappings by superharmonic functions of the extended real line $ \overline{\mathbf R} $ and of intervals of the form $ ( a, + \infty ] $, $ [- \infty , b) $, $ ( a, b) $, $ - \infty < a < b < + \infty $. Every superharmonic function on an open set $ E \subset \mathbf R ^ {n} $ is finely continuous on $ E $. A set $ E \subset \mathbf R ^ {n} $ is thin at a point $ x _ {0} \in E $ if and only if $ x _ {0} $ is a finely-isolated point of $ E $.

Let $ x _ {0} $ be a fine-limit point of $ E $, that is, $ E $ is not thin at $ x _ {0} $, and let $ f $ be a function defined on $ E $. The number $ \lambda $ is called the fine limit of $ f $ at $ x _ {0} $ if for every neighbourhood $ U ( \lambda ) $ of $ \lambda $ in $ \overline{\mathbf R} $ there exists a fine neighbourhood $ V ( x _ {0} ) $ of $ x _ {0} $ such that

$$ x \in E \cap V ( x _ {0} ) \Rightarrow f ( x) \in U ( \lambda ). $$

If $ \lambda $ is the fine limit of $ f $ at $ x _ {0} $, then there exists a fine neighbourhood $ V ( x _ {0} ) $ such that $ \lambda $ is an ordinary limit at $ x _ {0} $ of the restriction $ f \mid _ {E \cap V ( x _ {0} ) } $ (Cartan's theorem).

Let $ E $ be a closed set, thin at a point $ x _ {0} $, and let $ f > 0 $ be a superharmonic function defined on $ C E $ in a neighbourhood of $ x _ {0} $. Then $ f $ has a fine limit $ \lambda $ at $ x _ {0} $.

A fine topology has also been constructed in axiomatic potential theory (cf. [3]).

References

[1] M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959)
[2] N.S. Landkof, "Foundations of modern potential theory" , Springer (1972) (Translated from Russian)
[3] M. Brélot, "Lectures on potential theory" , Tata Inst. (1960)

Comments

A potential theory for finely-harmonic and finely-hyperharmonic functions is developed in [a1]. See also [a2].

References

[a1] B. Fuglede, "Finely harmonic functions" , Springer (1972)
[a2] J. Lukeš, J. Malý, L. Zajíček, "Fine topology methods in real analysis and potential theory" , Springer (1986)
How to Cite This Entry:
Fine topology. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fine_topology&oldid=52019
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article