Namespaces
Variants
Actions

Difference between revisions of "Fefferman-Garsia inequality"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
Line 1: Line 1:
C. Fefferman [[#References|[a3]]] discovered the remarkable fact that the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f1100401.png" /> is none other than the  "dual"  of the Hardy space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f1100402.png" /> in the sense of function analysis (cf. also [[Functional analysis|Functional analysis]]; [[Hardy spaces|Hardy spaces]]; [[Duality|Duality]]; [[BMO-space|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f1100403.png" />-space]]). In establishing the above duality, Fefferman discovered the following  "formal"  inequality: if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f1100404.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f1100405.png" />, then
+
<!--
 +
f1100401.png
 +
$#A+1 = 26 n = 3
 +
$#C+1 = 26 : ~/encyclopedia/old_files/data/F110/F.1100040 Fefferman\ANDGarsia inequality
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f1100406.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The word "formal" is used here since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f1100407.png" /> does not necessarily have a finite [[Lebesgue integral|Lebesgue integral]]. However, one can define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f1100408.png" /> by setting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f1100409.png" />, since it has been proved that in this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f11004010.png" /> exists. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f11004011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f11004012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f11004013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f11004014.png" /> a.s., are regular martingales. Later, A.M. Garsia [[#References|[a4]]] proved an analogous inequality for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f11004015.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f11004016.png" />.
+
C. Fefferman [[#References|[a3]]] discovered the remarkable fact that the space $ { \mathop{\rm BMO} } $
 +
is none other than the  "dual" of the Hardy space  $  H _ {1} $
 +
in the sense of function analysis (cf. also [[Functional analysis|Functional analysis]]; [[Hardy spaces|Hardy spaces]]; [[Duality|Duality]]; [[BMO-space| $  { \mathop{\rm BMO} } $-
 +
space]]). In establishing the above duality, Fefferman discovered the following  "formal" inequality: if  $  X \in H _ {1} $
 +
and  $  Y \in { \mathop{\rm BMO} } $,
 +
then
  
S. Ishak and J. Mogyorodi [[#References|[a5]]] extended the validity of the Fefferman–Garsia inequality to all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f11004017.png" />. In 1983, [[#References|[a6]]], [[#References|[a7]]], [[#References|[a8]]], they also proved the following generalization: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f11004018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f11004019.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f11004020.png" /> is a pair of conjugate Young functions (cf. also [[Dual functions|Dual functions]]) such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f11004021.png" /> has a finite power, then
+
$$
 +
\left | { {\mathsf E} ( XY ) } \right | \leq  c \left \| X \right \| _ {H _ {1}  } \left \| Y \right \| _ { { \mathop{\rm BMO}  } } .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f11004022.png" /></td> </tr></table>
+
The word  "formal" is used here since  $  XY $
 +
does not necessarily have a finite [[Lebesgue integral|Lebesgue integral]]. However, one can define  $  {\mathsf E} ( XY ) $
 +
by setting  $  {\mathsf E} ( XY ) = {\lim\limits } _ {n \rightarrow \infty }  {\mathsf E} ( X _ {n} Y _ {n} ) $,
 +
since it has been proved that in this case  $  {\lim\limits } _ {n \rightarrow \infty }  {\mathsf E} ( X _ {n} Y _ {n} ) $
 +
exists. Here,  $  X _ {n} = {\mathsf E} ( X \mid  {\mathcal F} _ {n} ) $
 +
and  $  Y _ {n} = {\mathsf E} ( Y \mid  {\mathcal F} _ {n} ) $,
 +
$  n \geq  0 $,
 +
$  X _ {0} = Y _ {0} = 0 $
 +
a.s., are regular martingales. Later, A.M. Garsia [[#References|[a4]]] proved an analogous inequality for  $  H _ {p} $
 +
with  $  1 < p \leq  1 $.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f11004023.png" /> is a constant depending only on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f11004024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f11004025.png" /> stands for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110040/f11004026.png" />, which exists.
+
S. Ishak and J. Mogyorodi [[#References|[a5]]] extended the validity of the Fefferman–Garsia inequality to all  $  p \geq  1 $.  
 +
In 1983, [[#References|[a6]]], [[#References|[a7]]], [[#References|[a8]]], they also proved the following generalization: If  $  X \in H _  \Phi  $
 +
and  $  Y \in K _  \Psi  $,
 +
where  $  ( \Phi, \Psi ) $
 +
is a pair of conjugate Young functions (cf. also [[Dual functions|Dual functions]]) such that  $  \Phi $
 +
has a finite power, then
 +
 
 +
$$
 +
\left | { {\mathsf E} ( XY ) } \right | \leq  C _  \Phi  \left \| X \right \| _ {H _  \Phi  } \left \| Y \right \| _ {K _  \Psi  } ,
 +
$$
 +
 
 +
where  $  C _  \Phi  > 0 $
 +
is a constant depending only on $  \Phi $
 +
and $  {\mathsf E} ( XY ) $
 +
stands for $  {\lim\limits } _ {n \rightarrow \infty }  {\mathsf E} ( X _ {n} Y _ {n} ) $,  
 +
which exists.
  
 
It was proved in [[#References|[a1]]], [[#References|[a2]]] that the generalized Fefferman–Garsia inequality holds if and only if the right-hand side of the corresponding [[Burkholder–Davis–Gundy inequality|Burkholder–Davis–Gundy inequality]] holds.
 
It was proved in [[#References|[a1]]], [[#References|[a2]]] that the generalized Fefferman–Garsia inequality holds if and only if the right-hand side of the corresponding [[Burkholder–Davis–Gundy inequality|Burkholder–Davis–Gundy inequality]] holds.

Revision as of 19:38, 5 June 2020


C. Fefferman [a3] discovered the remarkable fact that the space $ { \mathop{\rm BMO} } $ is none other than the "dual" of the Hardy space $ H _ {1} $ in the sense of function analysis (cf. also Functional analysis; Hardy spaces; Duality; $ { \mathop{\rm BMO} } $- space). In establishing the above duality, Fefferman discovered the following "formal" inequality: if $ X \in H _ {1} $ and $ Y \in { \mathop{\rm BMO} } $, then

$$ \left | { {\mathsf E} ( XY ) } \right | \leq c \left \| X \right \| _ {H _ {1} } \left \| Y \right \| _ { { \mathop{\rm BMO} } } . $$

The word "formal" is used here since $ XY $ does not necessarily have a finite Lebesgue integral. However, one can define $ {\mathsf E} ( XY ) $ by setting $ {\mathsf E} ( XY ) = {\lim\limits } _ {n \rightarrow \infty } {\mathsf E} ( X _ {n} Y _ {n} ) $, since it has been proved that in this case $ {\lim\limits } _ {n \rightarrow \infty } {\mathsf E} ( X _ {n} Y _ {n} ) $ exists. Here, $ X _ {n} = {\mathsf E} ( X \mid {\mathcal F} _ {n} ) $ and $ Y _ {n} = {\mathsf E} ( Y \mid {\mathcal F} _ {n} ) $, $ n \geq 0 $, $ X _ {0} = Y _ {0} = 0 $ a.s., are regular martingales. Later, A.M. Garsia [a4] proved an analogous inequality for $ H _ {p} $ with $ 1 < p \leq 1 $.

S. Ishak and J. Mogyorodi [a5] extended the validity of the Fefferman–Garsia inequality to all $ p \geq 1 $. In 1983, [a6], [a7], [a8], they also proved the following generalization: If $ X \in H _ \Phi $ and $ Y \in K _ \Psi $, where $ ( \Phi, \Psi ) $ is a pair of conjugate Young functions (cf. also Dual functions) such that $ \Phi $ has a finite power, then

$$ \left | { {\mathsf E} ( XY ) } \right | \leq C _ \Phi \left \| X \right \| _ {H _ \Phi } \left \| Y \right \| _ {K _ \Psi } , $$

where $ C _ \Phi > 0 $ is a constant depending only on $ \Phi $ and $ {\mathsf E} ( XY ) $ stands for $ {\lim\limits } _ {n \rightarrow \infty } {\mathsf E} ( X _ {n} Y _ {n} ) $, which exists.

It was proved in [a1], [a2] that the generalized Fefferman–Garsia inequality holds if and only if the right-hand side of the corresponding Burkholder–Davis–Gundy inequality holds.

References

[a1] N.L. Bassily, "Approximation theory" , Proc. Conf. Kecksemet, Hungary, 1990 , Colloq. Math. Soc. Janos Bolyai , 58 (1991) pp. 85–96
[a2] N.L. Bassily, "Probability theory and applications. Essays in memory of J. Mogyorodi" Math. Appl. , 80 (1992) pp. 33–45
[a3] C. Fefferman, "Characterisation of bounded mean oscillation" Amer. Math. Soc. , 77 (1971) pp. 587–588
[a4] A.M. Garsia, "Martingale inequalities. Seminar notes on recent progress" , Mathematics Lecture Notes , Benjamin (1973)
[a5] S. Ishak, J. Mogyorodi, "On the generalization of the Fefferman–Garsia inequality" , Proc. 3rd IFIP-WG17/1 Working Conf. , Lecture Notes in Control and Information Science , 36 , Springer (1981) pp. 85–97
[a6] S. Ishak, J. Mogyorodi, "On the -spaces and the generalization of Herz's and Fefferman inequalities I" Studia Math. Hung. , 17 (1982) pp. 229–234
[a7] S. Ishak, J. Mogyorodi, "On the -spaces and the generalization of Herz's and Fefferman inequalities II" Studia Math. Hung. , 18 (1983) pp. 205–210
[a8] S. Ishak, J. Mogyorodi, "On the -spaces and the generalization of Herz's and Fefferman inequalities III" Studia Math. Hung. , 18 (1983) pp. 211–219
How to Cite This Entry:
Fefferman-Garsia inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fefferman-Garsia_inequality&oldid=46910
This article was adapted from an original article by N.L. Bassily (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article