Namespaces
Variants
Actions

Fedosov trace formula

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

An asymptotic formula as $h \rightarrow 0$ for the "localized" trace of the exponential of a Hamiltonian $H ( t )$. The leading terms of this expansion can be calculated in terms of the fixed points of the classical Hamiltonian flow associated to $H$ (provided that it has only isolated fixed points, see below). Explicitly,

\begin{equation*} \operatorname { Tr } [ A \operatorname { exp } ( - i h ^ { - 1 } H ( t ) ) ] = \sum _ { k = 1 } ^ { n } a _ { 0 } ( x _ { k } ) d _ { k } e ^ { b _ { k } } + O ( h ). \end{equation*}

Here, the meaning of $x _ { k }$, $d _ { k }$ and $b _ { k }$ is the following. First, $A$ is a pseudo-differential operator with compactly supported Weyl symbol (cf. also Symbol of an operator). Let $H _ { 0 }$ and $H _ { 1 }$ be the homogeneous components of $H$, and denote by $f _ { t }$ the Hamiltonian flow associated to $H _ { 0 }$ (cf. also Hamiltonian system). The formula above is proved under the assumption that, on the support of $A$, the flow $f _ { t }$ has only isolated fixed points, denoted by $x _ { 1 } , \ldots , x _ { n }$. Then $d _ { k } = \operatorname { det } ( 1 - f _ { t } ^ { \prime } ( x _ { k } ) ) ^ { 1 / 2 }$ and $b _ { k } = - i h ^ { - 1 } H _ { 0 } ( x _ { k } ) t - i H _ { 1 } ( x _ { k } ) t$. See [a1].

References

[a1] B. Fedosov, "Trace formula for Schrödinger operator" Russian J. Math. Phys. , 1 (1993) pp. 447–463
How to Cite This Entry:
Fedosov trace formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fedosov_trace_formula&oldid=50490
This article was adapted from an original article by Victor Nistor (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article