Namespaces
Variants
Actions

Difference between revisions of "Extension theorems (in analytic geometry)"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Statements on the continuation (extension) of functions, sections of analytic sheaves, analytic sheaves, analytic subsets, holomorphic and meromorphic mappings, from the complement <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e0370701.png" /> in an [[Analytic space|analytic space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e0370702.png" /> of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e0370703.png" /> (as a rule, also analytic) to the whole space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e0370704.png" />. Two theorems of B. Riemann form the classical results concerning continuation of functions.
+
<!--
 +
e0370701.png
 +
$#A+1 = 94 n = 0
 +
$#C+1 = 94 : ~/encyclopedia/old_files/data/E037/E.0307070 Extension theorems (in analytic geometry)
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Riemann's first theorem states that every analytic function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e0370705.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e0370706.png" /> is a normal [[Complex space|complex space]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e0370707.png" /> an analytic subspace of codimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e0370708.png" />, can be continued to an analytic function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e0370709.png" />. Riemann's second theorem states that every analytic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707010.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707011.png" /> that is locally bounded on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707012.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707013.png" /> is a nowhere-dense analytic subset in a normal complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707014.png" />, can be continued to an analytic function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707015.png" />. There are generalizations of these theorems to arbitrary complex spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707016.png" />, as well as to sections of coherent analytic sheaves (cf. [[Local cohomology|Local cohomology]]).
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Important results concerning extension of analytic subsets are the theorems of Remmert–Stein–Shiffman and Bishop. The Remmert–Stein–Shiffman theorem states that every pure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707017.png" />-dimensional complex-analytic subset in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707019.png" /> is a complex-analytic space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707020.png" /> a closed subset having zero <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707021.png" />-dimensional [[Hausdorff measure|Hausdorff measure]], can be extended to a pure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707022.png" />-dimensional complex-analytic subset in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707023.png" />. Bishop's theorem states that every pure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707024.png" />-dimensional complex-analytic subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707025.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707026.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707027.png" /> is a complex-analytic space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707028.png" /> is a complex-analytic subset, can be extended to a pure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707029.png" />-dimensional complex-analytic subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707030.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707031.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707032.png" /> has locally finite volume in some neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707033.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707034.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707035.png" />.
+
Statements on the continuation (extension) of functions, sections of analytic sheaves, analytic sheaves, analytic subsets, holomorphic and meromorphic mappings, from the complement  $  X \setminus  A $
 +
in an [[Analytic space|analytic space]] $  X $
 +
of a set  $  A $(
 +
as a rule, also analytic) to the whole space $  X $.  
 +
Two theorems of B. Riemann form the classical results concerning continuation of functions.
  
There are criteria for extendability of analytic mappings, generalizing the classical [[Picard theorem|Picard theorem]]. E.g., every analytic mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707036.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707037.png" /> is a complex manifold, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707038.png" /> is an analytic nowhere-dense set and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707039.png" /> is a hyperbolic compact complex manifold, can be extended to an analytic mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707040.png" />. Every analytic mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707041.png" /> that is not everywhere-degenerate, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707042.png" /> is a complex manifold, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707043.png" /> is an analytic subset and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707044.png" /> is a compact complex manifold with negative first [[Chern class|Chern class]], can be extended to a meromorphic mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707045.png" />.
+
Riemann's first theorem states that every analytic function on  $  X \setminus  A $,
 +
where  $  X $
 +
is a normal [[Complex space|complex space]] and  $  A $
 +
an analytic subspace of codimension  $  \geq  2 $,
 +
can be continued to an analytic function on  $  X $.
 +
Riemann's second theorem states that every analytic function  $  f $
 +
on  $  X \setminus  A $
 +
that is locally bounded on  $  X $,
 +
where  $  A $
 +
is a nowhere-dense analytic subset in a normal complex space  $  X $,
 +
can be continued to an analytic function on  $  X $.
 +
There are generalizations of these theorems to arbitrary complex spaces  $  X $,
 +
as well as to sections of coherent analytic sheaves (cf. [[Local cohomology|Local cohomology]]).
 +
 
 +
Important results concerning extension of analytic subsets are the theorems of Remmert–Stein–Shiffman and Bishop. The Remmert–Stein–Shiffman theorem states that every pure  $  p $-
 +
dimensional complex-analytic subset in  $  X \setminus  A $,
 +
where  $  X $
 +
is a complex-analytic space and  $  A $
 +
a closed subset having zero  $  ( 2p - 1) $-
 +
dimensional [[Hausdorff measure|Hausdorff measure]], can be extended to a pure  $  p $-
 +
dimensional complex-analytic subset in  $  X $.
 +
Bishop's theorem states that every pure  $  p $-
 +
dimensional complex-analytic subset  $  V $
 +
in  $  X \setminus  A $,
 +
where  $  X $
 +
is a complex-analytic space and  $  A $
 +
is a complex-analytic subset, can be extended to a pure  $  p $-
 +
dimensional complex-analytic subset  $  \overline{V}\; $
 +
in  $  X $
 +
if  $  V $
 +
has locally finite volume in some neighbourhood  $  U $
 +
of  $  A $
 +
in  $  X $.
 +
 
 +
There are criteria for extendability of analytic mappings, generalizing the classical [[Picard theorem|Picard theorem]]. E.g., every analytic mapping $  X \setminus  A \rightarrow Y $,  
 +
where $  X $
 +
is a complex manifold, $  A $
 +
is an analytic nowhere-dense set and $  Y $
 +
is a hyperbolic compact complex manifold, can be extended to an analytic mapping $  X \rightarrow Y $.  
 +
Every analytic mapping $  X \setminus  A \rightarrow Y $
 +
that is not everywhere-degenerate, where $  X $
 +
is a complex manifold, $  A $
 +
is an analytic subset and $  Y $
 +
is a compact complex manifold with negative first [[Chern class|Chern class]], can be extended to a meromorphic mapping $  X \rightarrow Y $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.A. Griffiths,  J. King,  "Nevanlinna theory and holomorphic mappings between algebraic varieties"  ''Acta. Math.'' , '''130'''  (1973)  pp. 145–220</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Kobayashi,  "Hyperbolic manifolds and holomorphic mappings" , M. Dekker  (1970)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R. Harvey,  "Holomorphic chains and their boundaries" , ''Proc. Symp. Pure Math.'' , '''30''' , Amer. Math. Soc.  (1977)  pp. 309–382</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.A. Griffiths,  J. King,  "Nevanlinna theory and holomorphic mappings between algebraic varieties"  ''Acta. Math.'' , '''130'''  (1973)  pp. 145–220</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Kobayashi,  "Hyperbolic manifolds and holomorphic mappings" , M. Dekker  (1970)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R. Harvey,  "Holomorphic chains and their boundaries" , ''Proc. Symp. Pure Math.'' , '''30''' , Amer. Math. Soc.  (1977)  pp. 309–382</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Bishop's theorem has been generalized in several directions. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707046.png" /> be an open subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707048.png" /> a complex-analytic subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707049.png" />. First, Skoda's theorem states that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707050.png" /> is a positive closed current of bi-degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707051.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707052.png" /> which has locally finite mass in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707053.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707054.png" /> extends to a positive closed current on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707055.png" />. (A current on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707056.png" /> is a continuous linear functional on the space of all complex differential forms of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707057.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707058.png" />, with compact support, in the strong topology, cf. [[#References|[a1]]] and [[Differential form|Differential form]].) Next, H. El Mir showed that one may take <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707059.png" /> to be a closed complete pluripolar set, which is more general than a closed analytic set, and then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707060.png" /> as above will still extend. (A pluripolar set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707061.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707062.png" /> is a set such there exists a [[Plurisubharmonic function|plurisubharmonic function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707063.png" /> defined in some neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707064.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707065.png" />, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707066.png" /> set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707067.png" />. It is a complete pluripolar set if there is such a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707068.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707069.png" /> equal to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707070.png" /> set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707071.png" />.) N. Sibony generalized these results even further: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707072.png" /> is a pluripositive current of bi-degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707073.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707074.png" /> which has locally finite mass in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707075.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707076.png" /> extends to a pluripositive current on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707077.png" />.
+
Bishop's theorem has been generalized in several directions. Let $  X $
 +
be an open subset of $  \mathbf C  ^ {n} $
 +
and $  A $
 +
a complex-analytic subset of $  X $.  
 +
First, Skoda's theorem states that if $  T $
 +
is a positive closed current of bi-degree $  ( p, p) $
 +
on $  X \setminus  A $
 +
which has locally finite mass in a neighbourhood of $  A $,  
 +
then $  T $
 +
extends to a positive closed current on $  X $.  
 +
(A current on $  X $
 +
is a continuous linear functional on the space of all complex differential forms of class $  C  ^  \infty  $
 +
on $  X $,  
 +
with compact support, in the strong topology, cf. [[#References|[a1]]] and [[Differential form|Differential form]].) Next, H. El Mir showed that one may take $  A $
 +
to be a closed complete pluripolar set, which is more general than a closed analytic set, and then $  T $
 +
as above will still extend. (A pluripolar set $  A $
 +
in $  \mathbf C  ^ {n} $
 +
is a set such there exists a [[Plurisubharmonic function|plurisubharmonic function]] $  \phi $
 +
defined in some neighbourhood of $  A $
 +
such that $  A \subset  \{ {z } : {\phi ( z) = - \infty } \} $,  
 +
the $  - \infty $
 +
set of $  \phi $.  
 +
It is a complete pluripolar set if there is such a $  \phi $
 +
with $  A $
 +
equal to the $  - \infty $
 +
set of $  \phi $.)  
 +
N. Sibony generalized these results even further: If $  T $
 +
is a pluripositive current of bi-degree $  ( p, p) $
 +
on $  X \setminus  A $
 +
which has locally finite mass in a neighbourhood of $  A $,  
 +
then $  T $
 +
extends to a pluripositive current on $  X $.
  
One recovers Bishop's theorem from Skoda's using the fact that to every pure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707078.png" />-dimensional analytic subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707079.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707080.png" /> is associated a current <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707081.png" />, the current of integration over the regular points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707082.png" />. This is a positive closed current of bi-degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707083.png" />. One can return from currents to analytic sets using Siu's theorem (cf. [[#References|[a4]]]) on analyticity of sets associated to positive Lelong numbers. (The Lelong number at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707084.png" /> of a pure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707085.png" />-dimensional [[Analytic set|analytic set]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707086.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707087.png" /> is the number
+
One recovers Bishop's theorem from Skoda's using the fact that to every pure $  p $-
 +
dimensional analytic subset $  V $
 +
of $  X $
 +
is associated a current $  [ V] $,  
 +
the current of integration over the regular points of $  V $.  
 +
This is a positive closed current of bi-degree $  ( p, p) $.  
 +
One can return from currents to analytic sets using Siu's theorem (cf. [[#References|[a4]]]) on analyticity of sets associated to positive Lelong numbers. (The Lelong number at a point $  a $
 +
of a pure $  p $-
 +
dimensional [[Analytic set|analytic set]] $  A $
 +
in $  \mathbf C  ^ {n} $
 +
is the number
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707088.png" /></td> </tr></table>
+
$$
 +
n ( A , a )  = \lim\limits _
 +
{r \rightarrow 0
 +
\frac{ \mathop{\rm vol} _ {2p}  A _ {r} }{c ( p) r  ^ {2p} }
 +
.
 +
$$
  
The limit exists (cf., e.g., [[#References|[a1]]]); in this formula, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707089.png" />, the volume of the unit ball in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707090.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707091.png" /> (i.e. the part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707092.png" /> contained in the ball with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707093.png" /> and radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037070/e03707094.png" />), cf. also [[#References|[a1]]].)
+
The limit exists (cf., e.g., [[#References|[a1]]]); in this formula, $  c ( p) = \pi  ^ {p} / p ! $,  
 +
the volume of the unit ball in $  \mathbf C  ^ {n} $,  
 +
and $  A _ {r} = \{ {z \in A } : {| z - a | < r } \} $(
 +
i.e. the part of $  A $
 +
contained in the ball with centre $  a $
 +
and radius $  r $),  
 +
cf. also [[#References|[a1]]].)
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.M. Chirka,  "Complex analytic sets" , Kluwer  (1989)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Sibony,  "Quelques problèmes de prolongement de courants en analyse complexe"  ''Duke Math. J.'' , '''52'''  (1985)  pp. 157–197</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  Y.T. Siu,  "Techniques of extension of analytic objects" , M. Dekker  (1974)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  Y.T. Siu,  "Analyticity of sets associated to Lelong numbers and the extension of closed positive currents"  ''Inv. Math.'' , '''27'''  (1974)  pp. 53–156</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.M. Chirka,  "Complex analytic sets" , Kluwer  (1989)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Sibony,  "Quelques problèmes de prolongement de courants en analyse complexe"  ''Duke Math. J.'' , '''52'''  (1985)  pp. 157–197</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  Y.T. Siu,  "Techniques of extension of analytic objects" , M. Dekker  (1974)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  Y.T. Siu,  "Analyticity of sets associated to Lelong numbers and the extension of closed positive currents"  ''Inv. Math.'' , '''27'''  (1974)  pp. 53–156</TD></TR></table>

Latest revision as of 19:38, 5 June 2020


Statements on the continuation (extension) of functions, sections of analytic sheaves, analytic sheaves, analytic subsets, holomorphic and meromorphic mappings, from the complement $ X \setminus A $ in an analytic space $ X $ of a set $ A $( as a rule, also analytic) to the whole space $ X $. Two theorems of B. Riemann form the classical results concerning continuation of functions.

Riemann's first theorem states that every analytic function on $ X \setminus A $, where $ X $ is a normal complex space and $ A $ an analytic subspace of codimension $ \geq 2 $, can be continued to an analytic function on $ X $. Riemann's second theorem states that every analytic function $ f $ on $ X \setminus A $ that is locally bounded on $ X $, where $ A $ is a nowhere-dense analytic subset in a normal complex space $ X $, can be continued to an analytic function on $ X $. There are generalizations of these theorems to arbitrary complex spaces $ X $, as well as to sections of coherent analytic sheaves (cf. Local cohomology).

Important results concerning extension of analytic subsets are the theorems of Remmert–Stein–Shiffman and Bishop. The Remmert–Stein–Shiffman theorem states that every pure $ p $- dimensional complex-analytic subset in $ X \setminus A $, where $ X $ is a complex-analytic space and $ A $ a closed subset having zero $ ( 2p - 1) $- dimensional Hausdorff measure, can be extended to a pure $ p $- dimensional complex-analytic subset in $ X $. Bishop's theorem states that every pure $ p $- dimensional complex-analytic subset $ V $ in $ X \setminus A $, where $ X $ is a complex-analytic space and $ A $ is a complex-analytic subset, can be extended to a pure $ p $- dimensional complex-analytic subset $ \overline{V}\; $ in $ X $ if $ V $ has locally finite volume in some neighbourhood $ U $ of $ A $ in $ X $.

There are criteria for extendability of analytic mappings, generalizing the classical Picard theorem. E.g., every analytic mapping $ X \setminus A \rightarrow Y $, where $ X $ is a complex manifold, $ A $ is an analytic nowhere-dense set and $ Y $ is a hyperbolic compact complex manifold, can be extended to an analytic mapping $ X \rightarrow Y $. Every analytic mapping $ X \setminus A \rightarrow Y $ that is not everywhere-degenerate, where $ X $ is a complex manifold, $ A $ is an analytic subset and $ Y $ is a compact complex manifold with negative first Chern class, can be extended to a meromorphic mapping $ X \rightarrow Y $.

References

[1] P.A. Griffiths, J. King, "Nevanlinna theory and holomorphic mappings between algebraic varieties" Acta. Math. , 130 (1973) pp. 145–220
[2] S. Kobayashi, "Hyperbolic manifolds and holomorphic mappings" , M. Dekker (1970)
[3] R. Harvey, "Holomorphic chains and their boundaries" , Proc. Symp. Pure Math. , 30 , Amer. Math. Soc. (1977) pp. 309–382

Comments

Bishop's theorem has been generalized in several directions. Let $ X $ be an open subset of $ \mathbf C ^ {n} $ and $ A $ a complex-analytic subset of $ X $. First, Skoda's theorem states that if $ T $ is a positive closed current of bi-degree $ ( p, p) $ on $ X \setminus A $ which has locally finite mass in a neighbourhood of $ A $, then $ T $ extends to a positive closed current on $ X $. (A current on $ X $ is a continuous linear functional on the space of all complex differential forms of class $ C ^ \infty $ on $ X $, with compact support, in the strong topology, cf. [a1] and Differential form.) Next, H. El Mir showed that one may take $ A $ to be a closed complete pluripolar set, which is more general than a closed analytic set, and then $ T $ as above will still extend. (A pluripolar set $ A $ in $ \mathbf C ^ {n} $ is a set such there exists a plurisubharmonic function $ \phi $ defined in some neighbourhood of $ A $ such that $ A \subset \{ {z } : {\phi ( z) = - \infty } \} $, the $ - \infty $ set of $ \phi $. It is a complete pluripolar set if there is such a $ \phi $ with $ A $ equal to the $ - \infty $ set of $ \phi $.) N. Sibony generalized these results even further: If $ T $ is a pluripositive current of bi-degree $ ( p, p) $ on $ X \setminus A $ which has locally finite mass in a neighbourhood of $ A $, then $ T $ extends to a pluripositive current on $ X $.

One recovers Bishop's theorem from Skoda's using the fact that to every pure $ p $- dimensional analytic subset $ V $ of $ X $ is associated a current $ [ V] $, the current of integration over the regular points of $ V $. This is a positive closed current of bi-degree $ ( p, p) $. One can return from currents to analytic sets using Siu's theorem (cf. [a4]) on analyticity of sets associated to positive Lelong numbers. (The Lelong number at a point $ a $ of a pure $ p $- dimensional analytic set $ A $ in $ \mathbf C ^ {n} $ is the number

$$ n ( A , a ) = \lim\limits _ {r \rightarrow 0 } \frac{ \mathop{\rm vol} _ {2p} A _ {r} }{c ( p) r ^ {2p} } . $$

The limit exists (cf., e.g., [a1]); in this formula, $ c ( p) = \pi ^ {p} / p ! $, the volume of the unit ball in $ \mathbf C ^ {n} $, and $ A _ {r} = \{ {z \in A } : {| z - a | < r } \} $( i.e. the part of $ A $ contained in the ball with centre $ a $ and radius $ r $), cf. also [a1].)

References

[a1] E.M. Chirka, "Complex analytic sets" , Kluwer (1989) (Translated from Russian)
[a2] N. Sibony, "Quelques problèmes de prolongement de courants en analyse complexe" Duke Math. J. , 52 (1985) pp. 157–197
[a3] Y.T. Siu, "Techniques of extension of analytic objects" , M. Dekker (1974)
[a4] Y.T. Siu, "Analyticity of sets associated to Lelong numbers and the extension of closed positive currents" Inv. Math. , 27 (1974) pp. 53–156
How to Cite This Entry:
Extension theorems (in analytic geometry). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Extension_theorems_(in_analytic_geometry)&oldid=46886
This article was adapted from an original article by D.A. Ponomarev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article