Exponential sum estimates
Exponential sums have the form
![]() |
where is a finite set of integers and
is a real-valued function (cf. also Trigonometric sum). The basic problem is to show, under suitable circumstances, that
as
. Unless there are obvious reasons to the contrary one actually expects
to have order around
. Exponential sums in more than one variable also occur, and much of what is stated below can be generalized to such sums.
Contents
Arithmetic sums.
There are two common types of exponential sum encountered in analytic number theory. In the first type, one starts with polynomials , a positive integer modulus
, and a finite interval
. One then takes
as the set of integers
for which
, and sets
, where
is any integer for which
. When
, such a sum is called complete. When
one may estimate the incomplete sum in terms of complete ones via the bound
![]() |
![]() |
Complete sums have multiplicative properties which enable one to reduce consideration to the case in which is a prime number or a power of a prime number. Moreover, Weil's Riemann hypothesis for curves over finite fields (see [a4], for example) shows that, if
is prime, then
![]() |
except when is constant modulo
. For powers of a prime number the situation is more complicated, but broadly similar. It follows that, for fixed
and
and
prime, the incomplete sum will be
as soon as
. It is an important outstanding problem (as of 2000) to improve on this in general.
Analytic sums.
The second type of exponential sum arises when extends to a suitably smooth function on a real interval
. Important examples correspond to
for
, or
, which occur in the theory of Waring's problem and the Riemann zeta-function, respectively (cf. also Waring problem; Zeta-function). Let
with positive integers
. One typically imposes the condition that
with
![]() | (a1) |
![]() |
for suitable constants ,
. Methods due to H. Weyl (see [a5], Chap. 2), J. van der Corput (see [a1]), I.M. Vinogradov and N.M. Korobov (see [a3], Chap. 6), and E. Bombieri and H. Iwaniec (see [a2]) have been used for sums of this type.
Van der Corput's method.
Of the above approaches, the method of van der Corput is perhaps the most versatile. It is based on two processes, which convert the original sum into other sums. The A-process uses the inequality
![]() |
![]() |
where satisfies
. This has the effect of replacing
by a function
which satisfies (a1) with a smaller value of
. To describe the B-process it is assumed that
is decreasing, and one writes
,
and
for
. The B-process then derives from the the estimate
![]() |
![]() |
![]() |
which may be viewed as a form of the Poisson summation formula. When , the B-process transforms
into a sum with the same value of
but a shorter range. In applications one uses the A-process repeatedly, with various values of
, until one has a sum to which the B-process can be applied effectively. One may then estimate the resulting shorter sum either via a trivial bound or by repeating the argument. In particular,
iterations of the A-process, followed by the B-process and a trivial estimate lead to van der Corput's
th derivative estimate: Let
be an integer, and let
with
,
integers. Suppose that
on
. Then, if
, one has
![]() |
![]() |
uniformly in .
Exponent pairs.
Many bounds of the form subject to (a1), or similar slightly stronger conditions, have been proved. If one has such a bound, one says that
is an exponent pair. Thus, the van der Corput third-derivative estimate shows that
is an exponent pair. The case
is of particular interest, since it leads to a bound for the Riemann zeta-function, of the form
for
. Although van der Corput's method leads to a rich source of exponent pairs, better results can be derived by more complicated methods. Thus, M.N. Huxley [a2], Chap. 17, shows that
is an exponent pair whenever
, using the Bombieri–Iwaniec method. It is conjectured that
is an exponent pair for any positive
. This can be seen as a generalization of the Lindelöf hypothesis for the Riemann zeta-function.
The Vinogradov–Korobov method.
When (a1) holds with larger than about
, the van der Corput method is inferior to that given by Vinogradov and Korobov. This range of values is important in establishing zero-free regions for the Riemann zeta-function, for example. The method reduces the problem to an estimate for the number of solutions of the simultaneous equations
for
with positive integer variables
. This is provided by Vinogradov's mean value theorem (cf. also Vinogradov method).
References
[a1] | S.W. Graham, G. Kolesnik, "Van der Corput's method for exponential sums" , London Math. Soc. Lecture Notes , 126 , Cambridge Univ. Press (1991) |
[a2] | M.N. Huxley, "Area, lattice points and exponential sums" , London Math. Soc. Monographs , 13 , Clarendon Press (1996) |
[a3] | A. Ivić, "The Riemann zeta-function" , Wiley (1985) |
[a4] | W.M. Schmidt, "Equations over finite fields. An elementary approach" , Lecture Notes in Mathematics , 536 , Springer (1976) |
[a5] | R.C. Vaughan, "The Hardy–Littlewood method" , Tracts in Math. , 80 , Cambridge Univ. Press (1981) |
[a6] | N.M. Korobov, "Exponential sums and their applications" , Kluwer Acad. Publ. (1992) |
Exponential sum estimates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Exponential_sum_estimates&oldid=17839