Namespaces
Variants
Actions

Difference between revisions of "Exponential distribution"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
<!--
 +
e0369001.png
 +
$#A+1 = 18 n = 0
 +
$#C+1 = 18 : ~/encyclopedia/old_files/data/E036/E.0306900 Exponential distribution
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
{{MSC|60E99}}
 
{{MSC|60E99}}
  
 
[[Category:Distribution theory]]
 
[[Category:Distribution theory]]
  
A continuous distribution of a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e0369001.png" /> defined by the density
+
A continuous distribution of a random variable $  X $
 +
defined by the density
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e0369002.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
p( x) =  \left \{
  
The density <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e0369003.png" /> is dependent on the positive scale parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e0369004.png" />. The formula for the moments is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e0369005.png" />, and, in particular, the expectation equals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e0369006.png" /> and the variance equals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e0369007.png" />; the characteristic function is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e0369008.png" />.
+
\begin{array}{ll}
 +
\lambda e ^ {- \lambda x } ,  & x \geq  0 ,  \\
 +
0 ,  & x < 0. \\
 +
\end{array}
 +
\right .
 +
$$
 +
 
 +
The density  $  p( x) $
 +
is dependent on the positive scale parameter $  \lambda $.  
 +
The formula for the moments is $  {\mathsf E} X  ^ {n} = n!/ \lambda  ^ {n} $,  
 +
and, in particular, the expectation equals $  {\mathsf E} X = 1/ \lambda $
 +
and the variance equals $  {\mathsf D} X = 1/ \lambda  ^ {2} $;  
 +
the characteristic function is $  ( 1- it/ \lambda )  ^ {-} 1 $.
  
 
The exponential distribution belongs to the family of gamma-distributions (cf. [[Gamma-distribution|Gamma-distribution]]) which are defined by the densities
 
The exponential distribution belongs to the family of gamma-distributions (cf. [[Gamma-distribution|Gamma-distribution]]) which are defined by the densities
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e0369009.png" /></td> </tr></table>
+
$$
 +
p( x)  =
 +
\frac{\lambda  ^  \alpha  x ^ {\alpha - 1 } }{\Gamma ( \alpha ) }
 +
e ^ {-
 +
\lambda x } ,\ \
 +
x \geq  0,\  \alpha > 0 ;
 +
$$
  
the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e03690010.png" />-fold convolution of the density (1) is equal to the gamma-density with the same parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e03690011.png" /> and with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e03690012.png" />.
+
the $  n $-
 +
fold convolution of the density (1) is equal to the gamma-density with the same parameter $  \lambda $
 +
and with $  \alpha = n $.
  
The exponential distribution is the unique distribution having the property of no after-effect: For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e03690013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e03690014.png" /> one has
+
The exponential distribution is the unique distribution having the property of no after-effect: For any $  x > 0 $,
 +
$  y > 0 $
 +
one has
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e03690015.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
{\mathsf P} \{ X > x + y \mid  X > y \}  = \
 +
{\mathsf P} \{ X > x \} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e03690016.png" /> is the conditional probability of the event <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e03690017.png" /> subject to the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036900/e03690018.png" />. Property (2) is also called the lack-of-memory property.
+
where $  {\mathsf P} \{ X > x + y \mid  X > y \} $
 +
is the conditional probability of the event $  X > x + y $
 +
subject to the condition $  X > y $.  
 +
Property (2) is also called the lack-of-memory property.
  
 
In a homogeneous [[Poisson process|Poisson process]], the distances between successive events have an exponential distribution. Conversely, a renewal process with exponential lifetime (1) is a Poisson process. An exponential distribution often arises as a limit process on the superposition or extension of renewal processes, as well as in high-level intersection problems in various random-path schemes, in critical branching processes, etc.
 
In a homogeneous [[Poisson process|Poisson process]], the distances between successive events have an exponential distribution. Conversely, a renewal process with exponential lifetime (1) is a Poisson process. An exponential distribution often arises as a limit process on the superposition or extension of renewal processes, as well as in high-level intersection problems in various random-path schemes, in critical branching processes, etc.
Line 26: Line 68:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"W. Feller,   "An introduction to probability theory and its applications" , '''2''' , Wiley (1971)</TD></TR></table>
+
{|
 
+
|valign="top"|{{Ref|F}}|| W. Feller, [[Feller, "An introduction to probability theory and its applications"|"An introduction to probability theory and its  applications"]] , '''2''' , Wiley (1971)
 
+
|}
  
 
====Comments====
 
====Comments====
Line 34: Line 76:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S.M. Ross,   "Stochastic processes" , Wiley (1983)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.D. [A.D. Solov'ev] Solovyev,   "Mathematical methods of reliability theory" , Acad. Press (1969) (Translated from Russian)</TD></TR></table>
+
{|
 +
|valign="top"|{{Ref|R}}|| S.M. Ross, "Stochastic processes" , Wiley (1983) {{MR|0683455}} {{ZBL|0555.60002}} {{ZBL|0568.60079}}
 +
|-
 +
|valign="top"|{{Ref|S}}|| A.D. Solovyev, "Mathematical methods of reliability theory" , Acad. Press (1969) (Translated from Russian) {{MR|0345234}} {{ZBL|0169.50501}}
 +
|}

Latest revision as of 19:38, 5 June 2020


2020 Mathematics Subject Classification: Primary: 60E99 [MSN][ZBL]

A continuous distribution of a random variable $ X $ defined by the density

$$ \tag{1 } p( x) = \left \{ \begin{array}{ll} \lambda e ^ {- \lambda x } , & x \geq 0 , \\ 0 , & x < 0. \\ \end{array} \right . $$

The density $ p( x) $ is dependent on the positive scale parameter $ \lambda $. The formula for the moments is $ {\mathsf E} X ^ {n} = n!/ \lambda ^ {n} $, and, in particular, the expectation equals $ {\mathsf E} X = 1/ \lambda $ and the variance equals $ {\mathsf D} X = 1/ \lambda ^ {2} $; the characteristic function is $ ( 1- it/ \lambda ) ^ {-} 1 $.

The exponential distribution belongs to the family of gamma-distributions (cf. Gamma-distribution) which are defined by the densities

$$ p( x) = \frac{\lambda ^ \alpha x ^ {\alpha - 1 } }{\Gamma ( \alpha ) } e ^ {- \lambda x } ,\ \ x \geq 0,\ \alpha > 0 ; $$

the $ n $- fold convolution of the density (1) is equal to the gamma-density with the same parameter $ \lambda $ and with $ \alpha = n $.

The exponential distribution is the unique distribution having the property of no after-effect: For any $ x > 0 $, $ y > 0 $ one has

$$ \tag{2 } {\mathsf P} \{ X > x + y \mid X > y \} = \ {\mathsf P} \{ X > x \} , $$

where $ {\mathsf P} \{ X > x + y \mid X > y \} $ is the conditional probability of the event $ X > x + y $ subject to the condition $ X > y $. Property (2) is also called the lack-of-memory property.

In a homogeneous Poisson process, the distances between successive events have an exponential distribution. Conversely, a renewal process with exponential lifetime (1) is a Poisson process. An exponential distribution often arises as a limit process on the superposition or extension of renewal processes, as well as in high-level intersection problems in various random-path schemes, in critical branching processes, etc.

The above features explain why the exponential distribution is widely used in calculating various systems in queueing theory and reliability theory. One assumes that the lifetimes of the devices are independent random variables with exponential distributions, and then the property (2) enables one to examine a queueing system by means of finite or denumerable Markov chains with continuous time. Similarly, one uses Markov chains in reliability theory, where the fault-free operating times of the individual devices can often be taken as independent and as having exponential distributions.

References

[F] W. Feller, "An introduction to probability theory and its applications" , 2 , Wiley (1971)

Comments

The lack-of-memory property is related to the Markov property in Poisson processes.

References

[R] S.M. Ross, "Stochastic processes" , Wiley (1983) MR0683455 Zbl 0555.60002 Zbl 0568.60079
[S] A.D. Solovyev, "Mathematical methods of reliability theory" , Acad. Press (1969) (Translated from Russian) MR0345234 Zbl 0169.50501
How to Cite This Entry:
Exponential distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Exponential_distribution&oldid=21095
This article was adapted from an original article by B.A. Sevast'yanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article