Namespaces
Variants
Actions

Existentially closed

From Encyclopedia of Mathematics
Revision as of 17:08, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

existentially complete

Let be a first-order language (cf. Model (in logic)). A substructure of an -structure (cf. Structure) is called existentially closed (or existentially complete) in if every existential sentence with parameters from is true in if it is true in . An existential sentence with parameters from is a closed formula , where is a formula without quantifiers in the first-order language of signature , with the signature of (cf. Model theory).

If is a substructure of and admits an embedding, fixing the elements of , in some elementary extension of (cf. Elementary theory), then is existentially closed in . Conversely, if is existentially closed in and is a cardinal number greater than the cardinality of , then admits an embedding, fixing the elements of , in every -saturated extension of (cf. also Model theory).

A member of a class of -structures is called existentially closed (or existentially complete) with respect to if is existentially closed in every member of , provided that is a substructure of .

If a field is existentially closed in an extension field , then is (relatively) algebraically closed in (cf. Algebraically closed field). Hence, a field that is existentially closed with respect to all fields must be algebraically closed, and a formally real field that is existentially closed with respect to all formally real fields must be a real closed field. Existentially closed fields or rings (with respect to suitable classes) give rise to a corresponding Nullstellensatz. This is a theorem describing the form of a polynomial depending on finitely many other polynomials , provided that there is an existentially closed member of the class containing the coefficients of the polynomials and such that every common root of the in is also a root of . For the class of fields, the corresponding theorem is Hilbert's Nullstellensatz (cf. Hilbert theorem). There are corresponding theorems for formally real fields (see Real closed field), -valued fields (see -adically closed field), differential fields, division rings, commutative rings, and commutative regular rings. The general model-theoretic framework was considered by V. Weispfenning in 1977.

References

[a1] G. Cherlin, "Model theoretic algebra" , Lecture Notes in Mathematics , 521 , Springer (1976)
How to Cite This Entry:
Existentially closed. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Existentially_closed&oldid=14384
This article was adapted from an original article by F.-V. Kuhlmann (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article