Namespaces
Variants
Actions

Exceptional value

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 30D35 [MSN][ZBL]

A concept in value-distribution theory. Let $f(z)$ be a meromorphic function in the whole $z$-plane and let $n(r,a,f)$ denote its number of $a$-points (counting multiplicities) in the disc $|z|\leq r$. According to R. Nevanlinna's first fundamental theorem (cf. [1]), as $r\to\infty$,

$$N(r,a,f)+m(r,a,f)=T(r,f)+O(1),$$

where $T(r,f)$ is the characteristic function, which does not depend on $a$, $N(r,a,f)$ is the counting function (the logarithmic average of $n(r,a,f)$) and $m(r,a,f)>0$ is a function expressing the average proximity of the values of $f$ to $a$ on $|z|=r$ (cf. Value-distribution theory). For the majority of values $a$ the quantities $N(r,a,f)$ and $T(r,f)$ are asymptotically equivalent, as $r\to\infty$. A (finite or infinite) number $a$ is called an exceptional value if this equivalence as $r\to\infty$ is violated. One distinguishes several kinds of exceptional values.

A number $a$ is called an exceptional value of $f$ in the sense of Poincaré if the number of $a$-points of $f$ in the whole plane is finite (cf. [1], [2]), in particular if $f(z)\neq a$ for any $z$.

A number $a$ is called an exceptional value of $f$ in the sense of Borel if $n(r,a,f)$ grows slower, in a certain sense, than $T(r,f)$, as $r\to\infty$ (cf. [1], [2]).

A number $a$ is called an exceptional value of $f$ in the sense of Nevanlinna (cf. [1]) if its defect (cf. Defective value)

$$\delta(a,f)=1-\lim_{r\to\infty}\sup\frac{N(r,a,f)}{T(r,f)}>0.$$

A number $a$ is called an exceptional value of $f$ in the sense of Valiron if

$$\Delta(a,f)=1-\lim_{r\to\infty}\inf\frac{N(r,a,f)}{(T(r,f)}>0.$$

A number $a$ for which

$$\beta(a,f)=\lim_{r\to\infty}\inf\frac{\max\limits_{|z|=r}\ln^+1/|f(z)-a|}{T(r,f)}>0$$

is also called an exceptional value for $f$. The quantity $\beta(a,f)$ (the positive deviation of $f$) characterizes the rate of the asymptotic approximation of $f(z)$ to $a$ (cf. [3]).

References

[1] Rolf Nevanlinna, "Analytic functions" , Springer (1970) (Translated from German) Zbl 0199.12501
[2] A.A. Gol'dberg, I.V. Ostrovskii, "Value distribution of meromorphic functions" , Moscow (1970) (In Russian). English translation, Amer. Math. Soc. (2008) ISBN 978-0-8218-4265-2 Zbl 1152.30026
[3] V.P. Petrenko, "Growth of meromorphic functions of finite lower order" Math. USSR Izv. , 3 : 2 (1969) pp. 391–432 Izv. Akad. Nauk SSSR Ser. Mat. , 33 : 2 (1969) pp. 414–454 Zbl 0194.11001

Comments

An $a$-point of $f$ is a point $z$ such that $f(z)=a$.

How to Cite This Entry:
Exceptional value. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Exceptional_value&oldid=54729
This article was adapted from an original article by V.P. Petrenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article