Namespaces
Variants
Actions

Evolvent of a plane curve

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 53A04 [MSN][ZBL]

involute

A curve $\bar\gamma$ assigned to the plane curve $\gamma$ such that $\gamma$ is the evolute of $\bar\gamma$. If $\mathbf{r} = \mathbf{r}(s)$ (where $s$ is the arc length parameter of $\gamma$) is the equation of $\gamma$, then the equation of its evolvent has the form $$ \bar{\mathbf{r}} = \mathbf{r}(s) + (c-s)\tau(s) \,, $$ where $c$ is an arbitrary constant and $\tau$ the unit tangent vector to $\gamma$. The figures show the construction of the evolvent in two typical cases: a) if for any $s<c$ the curvature $k(s)$ of $\gamma$ does not vanish (the evolvent is a regular curve); and b) if $k(s)$ vanishes only for $s=s_1$ and $k'(s_1) \ne 0$ (the point corresponding to $s=s_1$ on the evolvent is a cusp of the second kind).

Figure: e036720a

Figure: e036720b

About the evolvent of a surface, see Evolute (surface).


Comments

The evolvent is often called the involute of the curve. Involvents play a part in the construction of gears.

For references see also Evolute.

References

[a1] K. Strubecker, "Differential geometry" , I , de Gruyter (1964)
[a2] M. Berger, B. Gostiaux, "Differential geometry: manifolds, curves, and surfaces" , Springer (1988) pp. 305ff (Translated from French)
[a3] J.L. Coolidge, "A treatise on algebraic plane curves" , Dover, reprint (1959) pp. 195
[a4] H.W. Guggenheimer, "Differential geometry" , McGraw-Hill (1963) pp. 25; 60
[a5] M. Berger, "Geometry" , I , Springer (1987) pp. 253–254
How to Cite This Entry:
Evolvent of a plane curve. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Evolvent_of_a_plane_curve&oldid=42553
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article