Namespaces
Variants
Actions

Difference between revisions of "Etale topology"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (typo)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
The most important example of a Grothendieck topology (see [[Topologized category|Topologized category]]), making it possible to define cohomology and homotopy invariants for abstract algebraic varieties and schemes. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e0363001.png" /> be a scheme. The étale topology on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e0363002.png" /> is the name for the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e0363003.png" /> of étale <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e0363004.png" />-schemes the objects of which are étale morphisms (cf. [[Etale morphism|Etale morphism]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e0363005.png" /> and the morphisms of which are those of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e0363006.png" />-schemes. Finite families <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e0363007.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e0363008.png" /> are taken as coverings and so in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e0363009.png" /> a topology is introduced.
+
The most important example of a Grothendieck topology (see [[Topologized category]]), making it possible to define cohomology and homotopy invariants for abstract algebraic varieties and schemes. Let $X$ be a scheme. The étale topology on $X$ is the name for the category $X_{\text{et}}$ of étale $X$-schemes the objects of which are étale morphisms (cf. [[Etale morphism]]) $U \to X$ and the morphisms of which are those of the $X$-schemes. Finite families $\left({f_i:U_i\to U}\right)$ such that $U = \cup_i f_i[U_i]$ are taken as coverings and so in $X_{\text{et}}$ a topology is introduced.
  
A pre-sheaf of sets (groups, Abelian groups, etc.) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630010.png" /> is defined as a contravariant functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630011.png" /> from the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630012.png" /> into that of sets (groups, etc.). A pre-sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630013.png" /> is called a sheaf if for any covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630014.png" /> a section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630015.png" /> is determined by its restriction to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630016.png" /> and if for any compatible collection of sections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630017.png" /> there exists a unique section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630018.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630019.png" />. Many standard concepts of [[Sheaf theory|sheaf theory]] carry over to étale sheaves (that is, sheaves on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630020.png" />). For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630021.png" /> is a morphism of schemes and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630022.png" /> is an étale sheaf on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630023.png" />, then by putting
+
A pre-sheaf of sets (groups, Abelian groups, etc.) on $X_{\text{et}}$ is defined as a contravariant functor $\mathcal{F}$ from the category $X_{\text{et}}$ into that of sets (groups, etc.). A pre-sheaf $\mathcal{F}$ is called a sheaf if for any covering $\left({f_i:U_i\to U}\right)$ a section $s \in \mathcal{F}(U)$ is determined by its restriction to $U_i$ and if for any compatible collection of sections $s_i \in \mathcal{F}(U_i)$ there exists a unique section $s \in \mathcal{F}(U)$ such that $F_i^*(s) = S_i$. Many standard concepts of [[sheaf theory]] carry over to étale sheaves (that is, sheaves on $X_{\text{et}}$). For example, if $f : X \to Y$ is a morphism of schemes and $\mathcal{F}$ is an étale sheaf on $X$, then by putting
 +
$$
 +
(f * \mathcal{F})(V) = \mathcal{F}(X \times_Y V)
 +
$$
 +
one obtains the so-called direct image $f*\mathcal{F}$ of $\mathcal{F}$ for the morphism $f$. The functor $f^*$ adjoint to $f*$ on the left is called the inverse-image functor. In particular, the stalk of $\mathcal{F}$ at a geometric point $\eta : \mathrm{Spec}(F) \to X$ (where $K$ is an algebraically closed field) is defined as the set $\mathcal{F}_\eta = \eta^*\mathcal{F}(\mathrm{Spec}(K))$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630024.png" /></td> </tr></table>
+
An important example of a sheaf on $X_{\text{et}}$ is $\mathcal{F}_Z$, representable by a certain $X$-scheme $Z$; for it $\mathcal{F}_Z(U) = \mathrm{Hom}_X(U,Z)$. If $Z$ is a finite étale $X$-scheme, then the sheaf $\mathcal{F}_Z$ is called locally constant. A sheaf $F$ is said to be constructible if there exists a finite partition of $X$ into locally closed subschemes $X_i$ such that the restriction $\mathcal{F}|_{X_i}$ is locally constant on every $X_i$.
  
one obtains the so-called direct image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630025.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630026.png" /> for the morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630027.png" />. The functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630028.png" /> adjoint to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630029.png" /> on the left is called the inverse-image functor. In particular, the stalk of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630030.png" /> at a geometric point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630031.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630032.png" /> is an algebraically closed field) is defined as the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630033.png" />.
+
See also [[Etale cohomology]]; [[Homotopy type]] of a topological category.
  
An important example of a sheaf on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630034.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630035.png" />, representable by a certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630036.png" />-scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630037.png" />; for it <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630038.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630039.png" /> is a finite étale <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630040.png" />-scheme, then the sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630041.png" /> is called locally constant. A sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630042.png" /> is said to be constructible if there exists a finite partition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630043.png" /> into locally closed subschemes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630044.png" /> such that the restriction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630045.png" /> is locally constant on every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036300/e03630046.png" />.
+
====References====
 +
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  Yu.I. Manin,   "Algebraic topology of algebraic varieties" ''Russian Math. Surveys'' , '''20''' : 5/6  (1965)  pp. 183–192  ''Uspekhi Mat. Nauk'' , '''20''' :  6  (1965)  pp. 3–12</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  J.S. Milne,  "Etale cohomology" , Princeton Univ. Press  (1980)</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  M. Artin (ed.)  A. Grothendieck (ed.)  J.-L. Verdier (ed.) , ''Théorie des topos et cohomologie étale des schémas (SGA 4)'' , ''Lect. notes in math.'' , '''269; 270; 305''' , Springer  (1972–1973)</TD></TR>
 +
<TR><TD valign="top">[4]</TD> <TD valign="top">  P. Deligne,  "Cohomologie étale (SGA 4 1/2)" , ''Lect. notes in math.'' , '''569''' , Springer  (1977)</TD></TR>
 +
</table>
  
See also [[Etale cohomology|Etale cohomology]]; [[Homotopy type|Homotopy type]] of a topological category.
+
{{TEX|done}}
 
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Yu.I. Manin,  "Algebraic topology of algebraic varieties"  ''Russian Math. Surveys'' , '''20''' :  5/6  (1965)  pp. 183–192  ''Uspekhi Mat. Nauk'' , '''20''' :  6  (1965)  pp. 3–12</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.S. Milne,  "Etale cohomology" , Princeton Univ. Press  (1980)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M. Artin (ed.)  A. Grothendieck (ed.)  J.-L. Verdier (ed.) , ''Théorie des topos et cohomologie étale des schémas (SGA 4)'' , ''Lect. notes in math.'' , '''269; 270; 305''' , Springer  (1972–1973)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  P. Deligne,  "Cohomologie étale (SGA 4 1/2)" , ''Lect. notes in math.'' , '''569''' , Springer  (1977)</TD></TR></table>
 

Latest revision as of 20:07, 3 June 2017

The most important example of a Grothendieck topology (see Topologized category), making it possible to define cohomology and homotopy invariants for abstract algebraic varieties and schemes. Let $X$ be a scheme. The étale topology on $X$ is the name for the category $X_{\text{et}}$ of étale $X$-schemes the objects of which are étale morphisms (cf. Etale morphism) $U \to X$ and the morphisms of which are those of the $X$-schemes. Finite families $\left({f_i:U_i\to U}\right)$ such that $U = \cup_i f_i[U_i]$ are taken as coverings and so in $X_{\text{et}}$ a topology is introduced.

A pre-sheaf of sets (groups, Abelian groups, etc.) on $X_{\text{et}}$ is defined as a contravariant functor $\mathcal{F}$ from the category $X_{\text{et}}$ into that of sets (groups, etc.). A pre-sheaf $\mathcal{F}$ is called a sheaf if for any covering $\left({f_i:U_i\to U}\right)$ a section $s \in \mathcal{F}(U)$ is determined by its restriction to $U_i$ and if for any compatible collection of sections $s_i \in \mathcal{F}(U_i)$ there exists a unique section $s \in \mathcal{F}(U)$ such that $F_i^*(s) = S_i$. Many standard concepts of sheaf theory carry over to étale sheaves (that is, sheaves on $X_{\text{et}}$). For example, if $f : X \to Y$ is a morphism of schemes and $\mathcal{F}$ is an étale sheaf on $X$, then by putting $$ (f * \mathcal{F})(V) = \mathcal{F}(X \times_Y V) $$ one obtains the so-called direct image $f*\mathcal{F}$ of $\mathcal{F}$ for the morphism $f$. The functor $f^*$ adjoint to $f*$ on the left is called the inverse-image functor. In particular, the stalk of $\mathcal{F}$ at a geometric point $\eta : \mathrm{Spec}(F) \to X$ (where $K$ is an algebraically closed field) is defined as the set $\mathcal{F}_\eta = \eta^*\mathcal{F}(\mathrm{Spec}(K))$.

An important example of a sheaf on $X_{\text{et}}$ is $\mathcal{F}_Z$, representable by a certain $X$-scheme $Z$; for it $\mathcal{F}_Z(U) = \mathrm{Hom}_X(U,Z)$. If $Z$ is a finite étale $X$-scheme, then the sheaf $\mathcal{F}_Z$ is called locally constant. A sheaf $F$ is said to be constructible if there exists a finite partition of $X$ into locally closed subschemes $X_i$ such that the restriction $\mathcal{F}|_{X_i}$ is locally constant on every $X_i$.

See also Etale cohomology; Homotopy type of a topological category.

References

[1] Yu.I. Manin, "Algebraic topology of algebraic varieties" Russian Math. Surveys , 20 : 5/6 (1965) pp. 183–192 Uspekhi Mat. Nauk , 20 : 6 (1965) pp. 3–12
[2] J.S. Milne, "Etale cohomology" , Princeton Univ. Press (1980)
[3] M. Artin (ed.) A. Grothendieck (ed.) J.-L. Verdier (ed.) , Théorie des topos et cohomologie étale des schémas (SGA 4) , Lect. notes in math. , 269; 270; 305 , Springer (1972–1973)
[4] P. Deligne, "Cohomologie étale (SGA 4 1/2)" , Lect. notes in math. , 569 , Springer (1977)
How to Cite This Entry:
Etale topology. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Etale_topology&oldid=15079
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article