Namespaces
Variants
Actions

Erroneous decoding, probability of

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


One of the possible measures for characterizing the accuracy of information reproduction over a communication channel (see also Information, exactness of reproducibility of). For the transmission of information $ \xi $ from a source which has $ M $ different possible values $ 1 \dots M $ with probability distribution $ p _ {m} = {\mathsf P} \{ \xi = m \} $, $ m = 1 \dots M $, a certain communication channel is used. Then for fixed methods of coding and decoding (see also Information, transmission of), the probability of erroneous decoding $ P _ {e,m} $, $ m = 1 \dots M $, is defined by

$$ P _ {e,m} = {\mathsf P} \{ \xi \neq m \mid \xi = m \} , $$

where $ \widetilde \xi $ is the decoded message at the channel output. The variable quantity

$$ P _ {e} = {\mathsf P} \{ \widetilde \xi \neq \xi \} = \sum _{m=1} ^ { M } p _ {m} P _ {e,m} $$

is called the mean probability of erroneous decoding. The study of the optimal probability of erroneous decoding, $ P _ {e} ^ { \mathop{\rm opt} } $, defined by

$$ P _ {e} ^ { \mathop{\rm opt} } = \inf P _ {e} , $$

is of particular interest. The infimum is taken over all possible methods of coding and decoding. Owing to the difficulty of obtaining an accurate expression for $ P _ {e} ^ { \mathop{\rm opt} } $, which is caused by the fact that optimal coding methods are usually unknown, the study of the asymptotic behaviour of $ P _ {e} ^ { \mathop{\rm opt} } $ when the length of the message in the channel increases is of interest. More precisely, the following situation is studied. Let a segment of length $ N $ in a communication channel with discrete time be used, and put $ R = ( \mathop{\rm ln} M)/N $. The asymptotic behaviour of $ P _ {e} ^ { \mathop{\rm opt} } $ has to be studied when $ N \rightarrow \infty $ and $ R = \textrm{ const } $( this means that the length of the message increases, while its transmission rate remains constant). If the channel is a homogeneous memoryless channel with discrete time and if the spaces $ Y $ and $ \widetilde{Y} $ of values of the components of the input and output signals are finite, then the following upper and lower bounds for $ P _ {e} ^ { \mathop{\rm opt} } = P _ {e} ^ { \mathop{\rm opt} } ( N, R) $ are known:

$$ \tag{1 } \mathop{\rm exp} \{ - N[ E _ {sp} ( R - \alpha ( N)) + \beta ( N)] \} \leq $$

$$ \leq \ P _ {e} ^ { \mathop{\rm opt} } ( N, R) \leq \mathop{\rm exp} \{ - NE _ {r} ( R) \} , $$

where $ \alpha ( N) $ and $ \beta ( N) $ tend to zero with increasing $ N $, while the functions $ E _ {r} ( R) $ and $ E _ {sp} ( R) $ are defined as follows:

$$ \tag{2 } E _ {r} ( R) = \max _ {0 \leq \rho \leq 1 } \max _ {q( \cdot ) } [ E _ {0} ( \rho , q( \cdot )) - \rho R], $$

$$ \tag{3 } E _ {sp} ( R) = \sup _ {\rho > 0 } \max _ {q( \cdot ) } [ E _ {0} ( \rho , q( \cdot )) - \rho R], $$

where

$$ E _ {0} ( \rho , q( \cdot )) = \ - \mathop{\rm ln} \sum _ {\widetilde{y} \in \widetilde{Y} } \left [ \sum _ {y \in Y } q( y) q( y, \widetilde{y} ) ^ {1/( 1+ \rho ) } \right ] ^ {1+ \rho } . $$

Here, $ q( \cdot ) = \{ {q( y) } : {y \in Y } \} $ is an arbitrary probability distribution on $ Y $, $ q( y, \widetilde{y} ) = {\mathsf P} \{ \eta _ {k} = \widetilde{y} \mid \widetilde \eta _ {k} = y \} $, $ y \in Y $, $ \widetilde{y} \in \widetilde{Y} $, while $ \eta _ {k} $ and $ \widetilde \eta _ {k} $, $ k = 1 \dots N $, are the components of the input and output signals of the memoryless channel being considered. It is known that $ E _ {r} ( R) $ and $ E _ {sp} ( R) $, defined by the formulas (2) and (3), are positive, convex from below, monotone decreasing functions of $ R $ when $ 0 \leq R < C $, where $ C $ is the transmission rate of the channel (cf. Transmission rate of a channel), and that $ E _ {r} ( R) = E _ {sp} ( R) $ when $ R \geq R _ {cr} $; here $ R _ {cr} $ is a quantity defined by the transition matrix of the channel and called the critical speed of the given memoryless channel. Thus, for values $ R $, $ R _ {cr} \leq R < C $, the main terms of the upper and lower bounds (1) for $ P _ {e} ^ { \mathop{\rm opt} } $ coincide asymptotically, hence for this range of $ R $ the exact value of the reliability function of the channel, $ E( R) $, defined by

$$ E( R) = \overline{\lim\limits}\; _ {N \rightarrow \infty } \frac{- \mathop{\rm ln} P _ {e} ^ { \mathop{\rm opt} } ( N, R) }{N} , $$

is known. For values of $ R $, $ 0 \leq R < R _ {cr} $, the exact value of $ E( R) $ for arbitrary memoryless channels is still unknown (1983), although the bounds (1) can still be improved. The exponential character of decrease of $ P _ {e} ^ { \mathop{\rm opt} } ( N, R) $ has been proved for a very broad class of channels.

References

[1] R. Gallager, "Information theory and reliable communication" , 1–2 , Wiley (1968–1972)
[2] A.A. Feinstein, "Foundations of information theory" , McGraw-Hill (1958)
How to Cite This Entry:
Erroneous decoding, probability of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Erroneous_decoding,_probability_of&oldid=54935
This article was adapted from an original article by R.L. DobrushinV.V. Prelov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article