Namespaces
Variants
Actions

Ermakov convergence criterion

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 40A05 [MSN][ZBL]

A criterion for the convergence of a series $\sum_n f(n)$, where $f:[1, \infty[\to [0, \infty[$ is a monotone decreasing function, established by V.P. Ermakov in [Er].

Let $f(x)$ be a positive decreasing function for $x \ge 1$. If there is $\lambda< 1$ such that \[ \frac{e^x f(e^x)}{f(x)} < \lambda \] for sufficiently large $x$, then the series $\sum_n f(n)$ converges. If instead \[ \frac{e^x f(e^x)}{f(x)}\geq 1 \] for all sufficiently large $x$, then the series diverges. In particular the convergence or divergence of the series can be decided if the limit \[ \lim_{x\to\infty} \frac{e^x f(e^x)}{f(x)} \] exists and differs from 1.

Ermakov's criterion can be derived from the integral test.

References

[Br] T.J. Bromwich, "An introduction to the theory of infinite series" , Macmillan (1947)
[Er] V.P. Ermakov, "A new criterion for convergence and divergence of infinite series of constant sign" , Kiev (1872) (In Russian)
How to Cite This Entry:
Ermakov convergence criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ermakov_convergence_criterion&oldid=35853
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article