Namespaces
Variants
Actions

Equalizer

From Encyclopedia of Mathematics
Revision as of 21:21, 21 December 2017 by Richard Pinch (talk | contribs) (typo)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 18A30 [MSN][ZBL]

An equaliser of two morphisms $f,g$ between the objects $X, Y$ of a category $\mathfrak{K}$ is a morphism $e : W \rightarrow X$ such that $ef = eh$ and any morphism $d : A \rightarrow X$ such that $df = dg$ factors through $e$, that is, there exists $c : A \rightarrow W$ such that $cd = e$. A coequaliser is the dual notion.

An equaliser in the category of sets exists: it is the inclusion map on $\{ x \in X : f(x) = g(x) \}$. Similarly, a co-equaliser exists: it is the quotient map on $X$ determined by the equivalence relation $\sim$ generated by $f(x) \sim g(x),\ x \in X$.

If $\mathfrak{J}$ is the category ${\downarrow}{\downarrow}$, and $F$ is a functor from $\mathfrak{J}$ to $\mathfrak{K}$, then a limit of $F$ is an equaliser and a colimit of $F$ is a coequaliser.

Every equaliser in a category $\mathfrak{K}$ is a monomorphism and every coequaliser is an epimorphism. A monomorphism (resp. epimorphism) which is an equaliser (resp. coequaliser) is termed regular.

References

  • Saunders MacLane, "Categories for the working mathematician" Graduate Texts in Mathematics 5 Springer (1988) ISBN 0-387-98403-8 Zbl 0705.18001
How to Cite This Entry:
Equalizer. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Equalizer&oldid=42580