Namespaces
Variants
Actions

Difference between revisions of "Elliptic curve"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m
Line 1: Line 1:
A non-singular complete [[Algebraic curve|algebraic curve]] of genus 1. The theory of elliptic curves is the source of a large part of contemporary algebraic geometry. But historically the theory of elliptic curves arose as a part of analysis, as the theory of elliptic integrals and elliptic functions (cf. [[Elliptic integral|Elliptic integral]]; [[Elliptic function|Elliptic function]]).
+
A non-singular complete
 +
[[Algebraic curve|algebraic curve]] of genus 1. The theory of elliptic
 +
curves is the source of a large part of contemporary algebraic
 +
geometry. But historically the theory of elliptic curves arose as a
 +
part of analysis, as the theory of elliptic integrals and elliptic
 +
functions (cf.
 +
[[Elliptic integral|Elliptic integral]];
 +
[[Elliptic function|Elliptic function]]).
  
Examples. A non-singular plane projective cubic curve; the intersection of two non-singular quadrics in three-dimensional projective space; a two-sheeted covering of the projective line ramified at exactly four points; and also a one-dimensional Abelian variety are elliptic curves.
+
Examples. A non-singular plane projective cubic curve; the
 +
intersection of two non-singular quadrics in three-dimensional
 +
projective space; a two-sheeted covering of the projective line
 +
ramified at exactly four points; and also a one-dimensional Abelian
 +
variety are elliptic curves.
  
 
==The geometry of an elliptic curve.==
 
==The geometry of an elliptic curve.==
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e0354501.png" /> be an elliptic curve over an algebraically closed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e0354502.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e0354503.png" /> is biregularly isomorphic to a plane cubic curve (see [[#References|[1]]], [[#References|[9]]], [[#References|[13]]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e0354504.png" />, then in the projective plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e0354505.png" /> there is an affine coordinate system in which the equation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e0354506.png" /> is in normal Weierstrass form:
+
Let $X$ be an elliptic curve
 
+
over an algebraically closed field $k$. Then $X$ is biregularly
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e0354507.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
isomorphic to a plane cubic curve (see
 
+
[[#References|[1]]],
The curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e0354508.png" /> is non-singular if and only if the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e0354509.png" /> does not have multiple zeros, that is, if the discriminant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545010.png" />. In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545011.png" /> the curve (1) has a unique point at infinity, which is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545012.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545013.png" /> is a point of inflection of (1), and the tangent at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545014.png" /> is the line at infinity. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545016.png" />-invariant of an elliptic curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545017.png" />,
+
[[#References|[9]]],
 
+
[[#References|[13]]]). If ${\rm char k} \ne 2,3$, then in the projective plane ${\mathbb P}^2$ there
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545018.png" /></td> </tr></table>
+
is an affine coordinate system in which the equation of $X$ is in
 
+
normal Weierstrass form:  
does not depend on the choice of the coordinate system. Two elliptic curves have the same <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545019.png" />-invariant if and only if they are biregularly isomorphic. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545020.png" /> there is an elliptic curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545021.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545022.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545023.png" />.
+
$$y^2=x^3+ax+b$$
 +
The curve $ $ is non-singular if and
 +
only if the polynomial $_$ does not have multiple zeros, that is, if
 +
the discriminant $_$. In $_$ the curve (1) has a unique point at
 +
infinity, which is denoted by $_$; $_$ is a point of inflection of
 +
(1), and the tangent at $_$ is the line at infinity. The $_$-invariant
 +
of an elliptic curve $_$,  
 +
$$_$$
 +
does not depend on the choice of the
 +
coordinate system. Two elliptic curves have the same $_$-invariant if
 +
and only if they are biregularly isomorphic. For any $_$ there is an
 +
elliptic curve $_$ over $_$ with $_$.
  
 
==The group structure on an elliptic curve.==
 
==The group structure on an elliptic curve.==
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545024.png" /> be a fixed point on an elliptic curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545025.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545026.png" /> assigning to a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545027.png" /> the [[Divisor|divisor]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545028.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545029.png" /> establishes a one-to-one correspondence between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545030.png" /> and the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545031.png" /> of divisor classes of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545032.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545033.png" />, that is, the [[Picard variety|Picard variety]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545034.png" />. This correspondence endows <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545035.png" /> with the structure of an Abelian group that is compatible with the structure of an algebraic variety and that turns <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545036.png" /> into a one-dimensional Abelian variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545037.png" />; here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545038.png" /> is the trivial element of the group. This group structure has the following geometric description. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545039.png" /> be a smooth plane cubic curve. Then the sum of two points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545041.png" /> is defined by the rule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545042.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545043.png" /> is the third point of intersection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545044.png" /> with the line passing through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545046.png" />. In other words, the sum of three points on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545047.png" /> vanishes if and only if the points are collinear.
+
Let $_$ be a fixed point
 +
on an elliptic curve $_$. The mapping $_$ assigning to a point $_$ the
 +
[[Divisor|divisor]] $_$ on $_$ establishes a one-to-one correspondence
 +
between $_$ and the group $_$ of divisor classes of degree $_$ on $_$,
 +
that is, the
 +
[[Picard variety|Picard variety]] of $_$. This correspondence endows
 +
$_$ with the structure of an Abelian group that is compatible with the
 +
structure of an algebraic variety and that turns $_$ into a
 +
one-dimensional Abelian variety $_$; here $_$ is the trivial element
 +
of the group. This group structure has the following geometric
 +
description. Let $_$ be a smooth plane cubic curve. Then the sum of
 +
two points $_$ and $_$ is defined by the rule $_$, where $_$ is the
 +
third point of intersection of $_$ with the line passing through $_$
 +
and $_$. In other words, the sum of three points on $_$ vanishes if
 +
and only if the points are collinear.
  
 
==An elliptic curve as a one-dimensional Abelian variety.==
 
==An elliptic curve as a one-dimensional Abelian variety.==
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545048.png" /> denote the endomorphism of multiplication by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545049.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545050.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545051.png" /> is an elliptic curve with distinguished point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545052.png" />, then any rational mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545053.png" /> has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545054.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545055.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545056.png" /> is a homomorphism of Abelian varieties. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545057.png" /> is either a constant mapping at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545058.png" /> or is an [[Isogeny|isogeny]], that is, there is a homomorphism of Abelian varieties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545059.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545060.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545061.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545062.png" /> (see [[#References|[1]]], [[#References|[6]]]).
+
Let $_$
 +
denote the endomorphism of multiplication by $_$ in $_$. If $_$ is an
 +
elliptic curve with distinguished point $_$, then any rational mapping
 +
$_$ has the form $_$, where $_$ and $_$ is a homomorphism of Abelian
 +
varieties. Here $_$ is either a constant mapping at $_$ or is an
 +
[[Isogeny|isogeny]], that is, there is a homomorphism of Abelian
 +
varieties $_$ such that $_$ and $_$ for some $_$ (see
 +
[[#References|[1]]],
 +
[[#References|[6]]]).
  
The automorphism group of an elliptic curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545063.png" /> acts transitively on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545064.png" />, and its subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545065.png" /> of automorphisms leaving <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545066.png" /> fixed is non-trivial and finite. Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545067.png" /> is not <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545068.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545069.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545070.png" /> is neither 0 nor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545071.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545072.png" /> consists of the two elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545073.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545074.png" />. The order of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545075.png" /> is 4 when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545076.png" /> and 6 when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545077.png" /> (see [[#References|[1]]], [[#References|[6]]], [[#References|[13]]]).
+
The automorphism group of an elliptic curve $_$ acts transitively on
 +
$_$, and its subgroup $_$ of automorphisms leaving $_$ fixed is
 +
non-trivial and finite. Suppose that $_$ is not $_$ or $_$. When $_$
 +
is neither 0 nor $_$, then $_$ consists of the two elements $_$ and
 +
$_$. The order of $_$ is 4 when $_$ and 6 when $_$ (see
 +
[[#References|[1]]],
 +
[[#References|[6]]],
 +
[[#References|[13]]]).
  
An important invariant of an elliptic curve is the endomorphism ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545078.png" /> of the Abelian variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545079.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545080.png" /> defines an imbedding of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545081.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545082.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545083.png" />, one says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545084.png" /> is an elliptic curve with complex multiplication. The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545085.png" /> can be of one of the following types (see [[#References|[1]]], [[#References|[9]]], [[#References|[13]]]): I) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545086.png" />; II) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545087.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545088.png" /> is the ring of algebraic integers of an imaginary quadratic field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545089.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545090.png" />; or III) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545091.png" /> is a non-commutative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545092.png" />-algebra of rank 4 without divisors of zero. In this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545093.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545094.png" /> is a maximal order in the quaternion algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545095.png" /> ramified only at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545096.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545097.png" />. Such elliptic curves exist for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545098.png" /> and are called supersingular; elliptic curves in characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e03545099.png" /> that are not supersingular are said to be ordinary.
+
An important invariant of an elliptic curve is the endomorphism ring
 +
$_$ of the Abelian variety $_$. The mapping $_$ defines an imbedding
 +
of $_$ in $_$. If $_$, one says that $_$ is an elliptic curve with
 +
complex multiplication. The ring $_$ can be of one of the following
 +
types (see
 +
[[#References|[1]]],
 +
[[#References|[9]]],
 +
[[#References|[13]]]): I) $_$; II) $_$, where $_$ is the ring of
 +
algebraic integers of an imaginary quadratic field $_$ and $_$; or
 +
III) $_$ is a non-commutative $_$-algebra of rank 4 without divisors
 +
of zero. In this case $_$ and $_$ is a maximal order in the quaternion
 +
algebra over $_$ ramified only at $_$ and $_$. Such elliptic curves
 +
exist for all $_$ and are called supersingular; elliptic curves in
 +
characteristic $_$ that are not supersingular are said to be ordinary.
  
The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450100.png" /> of points of an elliptic curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450101.png" /> with orders that divide <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450102.png" /> has the following structure: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450103.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450104.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450105.png" /> and ordinary elliptic curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450106.png" />, while for supersingular elliptic curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450107.png" />. For a prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450108.png" /> the [[Tate module|Tate module]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450109.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450110.png" />.
+
The group $_$ of points of an elliptic curve $_$ with orders that
 +
divide $_$ has the following structure: $_$ when $_$. For $_$ and
 +
ordinary elliptic curves $_$, while for supersingular elliptic curves
 +
$_$. For a prime number $_$ the
 +
[[Tate module|Tate module]] $_$ is isomorphic to $_$.
  
 
==Elliptic curves over non-closed fields.==
 
==Elliptic curves over non-closed fields.==
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450111.png" /> be an elliptic curve over an arbitrary field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450112.png" />. If the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450113.png" />-rational points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450114.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450115.png" /> is not empty, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450116.png" /> is biregularly isomorphic to a plane cubic curve (1) with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450117.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450118.png" />). The point at infinity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450119.png" /> of (1) is defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450120.png" />. As above, one can introduce a group structure on (1), turning <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450121.png" /> into a one-dimensional Abelian variety over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450122.png" /> and turning the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450123.png" /> into an Abelian group with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450124.png" /> as trivial element. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450125.png" /> is finitely generated over its prime subfield, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450126.png" /> is a finitely-generated group (the Mordell–Weil theorem).
+
Let $_$ be an elliptic
 +
curve over an arbitrary field $_$. If the set of $_$-rational points
 +
$_$ of $_$ is not empty, then $_$ is biregularly isomorphic to a plane
 +
cubic curve (1) with $_$ ($_$). The point at infinity $_$ of (1) is
 +
defined over $_$. As above, one can introduce a group structure on
 +
(1), turning $_$ into a one-dimensional Abelian variety over $_$ and
 +
turning the set $_$ into an Abelian group with $_$ as trivial
 +
element. If $_$ is finitely generated over its prime subfield, then
 +
$_$ is a finitely-generated group (the Mordell–Weil theorem).
  
For any elliptic curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450127.png" /> there is defined the [[Jacobi variety|Jacobi variety]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450128.png" />, which is a one-dimensional Abelian variety over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450129.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450130.png" /> is a [[Principal homogeneous space|principal homogeneous space]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450131.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450132.png" /> is not empty, then the choice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450133.png" /> specifies an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450134.png" /> under which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450135.png" /> becomes the trivial element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450136.png" />. In general, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450137.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450138.png" /> are isomorphic over a finite extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450139.png" /> (see [[#References|[1]]], [[#References|[4]]], [[#References|[13]]]).
+
For any elliptic curve $_$ there is defined the
 +
[[Jacobi variety|Jacobi variety]] $_$, which is a one-dimensional
 +
Abelian variety over $_$, and $_$ is a
 +
[[Principal homogeneous space|principal homogeneous space]] over
 +
$_$. If $_$ is not empty, then the choice of $_$ specifies an
 +
isomorphism $_$ under which $_$ becomes the trivial element of $_$. In
 +
general, $_$ and $_$ are isomorphic over a finite extension of $_$
 +
(see
 +
[[#References|[1]]],
 +
[[#References|[4]]],
 +
[[#References|[13]]]).
  
 
==Elliptic curves over the field of complex numbers.==
 
==Elliptic curves over the field of complex numbers.==
An elliptic curve over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450140.png" /> is a compact [[Riemann surface|Riemann surface]] of genus 1, and vice versa. The group structure turns <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450141.png" /> into a complex Lie group, which is a one-dimensional complex torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450142.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450143.png" /> is a lattice in the complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450144.png" />. Conversely, any one-dimensional complex torus is an elliptic curve (see [[#References|[3]]]). From the topological point of view, an elliptic curve is a two-dimensional torus.
+
An elliptic
 
+
curve over $_$ is a compact
The theory of elliptic curves over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450145.png" /> is in essence equivalent to the theory of elliptic functions. An identification of a torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450146.png" /> with an elliptic curve can be effected as follows. The elliptic functions with a given period lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450147.png" /> form a field generated by the Weierstrass <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450148.png" />-function (see [[Weierstrass elliptic functions|Weierstrass elliptic functions]]) and its derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450149.png" />, which are connected by the relation
+
[[Riemann surface|Riemann surface]] of genus 1, and vice versa. The
 
+
group structure turns $_$ into a complex Lie group, which is a
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450150.png" /></td> </tr></table>
+
one-dimensional complex torus $_$, where $_$ is a lattice in the
 +
complex plane $_$. Conversely, any one-dimensional complex torus is an
 +
elliptic curve (see
 +
[[#References|[3]]]). From the topological point of view, an elliptic
 +
curve is a two-dimensional torus.
  
The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450151.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450152.png" />) induces an isomorphism between the torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450153.png" /> and the elliptic curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450154.png" /> with equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450155.png" />. The identification of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450156.png" /> given by (1) with the torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450157.png" /> is effected by curvilinear integrals of the holomorphic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450158.png" /> and gives an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450159.png" />.
+
The theory of elliptic curves over $_$ is in essence equivalent to the
 +
theory of elliptic functions. An identification of a torus $_$ with an
 +
elliptic curve can be effected as follows. The elliptic functions with
 +
a given period lattice $_$ form a field generated by the Weierstrass
 +
$_$-function (see
 +
[[Weierstrass elliptic functions|Weierstrass elliptic functions]]) and
 +
its derivative $_$, which are connected by the relation
 +
$$_$$
 +
The
 +
mapping $_$ ($_$) induces an isomorphism between the torus $_$ and the
 +
elliptic curve $_$ with equation $_$. The identification of $_$ given
 +
by (1) with the torus $_$ is effected by curvilinear integrals of the
 +
holomorphic form $_$ and gives an isomorphism $_$.
  
The description of the set of all elliptic curves as tori <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450160.png" /> leads to the [[Modular function|modular function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450161.png" />. Two lattices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450162.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450163.png" /> determine isomorphic tori if and only if they are similar, that is, if one is obtained from the other by multiplication by a complex number. Therefore it may be assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450164.png" /> is generated by the numbers 1 and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450165.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450166.png" />. Two lattices with bases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450167.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450168.png" /> are similar if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450169.png" /> for an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450170.png" /> of the [[Modular group|modular group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450171.png" />. The modular function
+
The description of the set of all elliptic curves as tori $_$ leads to
 +
the
 +
[[Modular function|modular function]] $_$. Two lattices $_$ and $_$
 +
determine isomorphic tori if and only if they are similar, that is, if
 +
one is obtained from the other by multiplication by a complex
 +
number. Therefore it may be assumed that $_$ is generated by the
 +
numbers 1 and $_$ in $_$. Two lattices with bases $_$ and $_$ are
 +
similar if and only if $_$ for an element $_$ of the
 +
[[Modular group|modular group]] $_$. The modular function  
 +
$$_$$
 +
is
 +
also called the absolute invariant; $_$ if and only if $_$ for some
 +
$_$, and the function $_$ produces a one-to-one correspondence between
 +
the classes of isomorphic elliptic curves over $_$ and the complex
 +
numbers. If $_$, then $_$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450172.png" /></td> </tr></table>
+
An elliptic curve $_$ has complex multiplication if and only if $_$ is
 
+
an imaginary
is also called the absolute invariant; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450173.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450174.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450175.png" />, and the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450176.png" /> produces a one-to-one correspondence between the classes of isomorphic elliptic curves over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450177.png" /> and the complex numbers. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450178.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450179.png" />.
+
[[Quadratic irrationality|quadratic irrationality]]. In this case $_$
 
+
is a subring of finite index in the ring of algebraic integers of the
An elliptic curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450180.png" /> has complex multiplication if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450181.png" /> is an imaginary [[Quadratic irrationality|quadratic irrationality]]. In this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450182.png" /> is a subring of finite index in the ring of algebraic integers of the imaginary quadratic field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450183.png" />. Elliptic curves with complex multiplication are closely connected with the [[Class field theory|class field theory]] for imaginary quadratic fields (see [[#References|[4]]], [[#References|[8]]]).
+
imaginary quadratic field $_$. Elliptic curves with complex
 +
multiplication are closely connected with the
 +
[[Class field theory|class field theory]] for imaginary quadratic
 +
fields (see
 +
[[#References|[4]]],
 +
[[#References|[8]]]).
  
 
==Arithmetic of elliptic curves.==
 
==Arithmetic of elliptic curves.==
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450184.png" /> be an elliptic curve over the finite field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450185.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450186.png" /> elements. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450187.png" /> is always non-empty and finite. Hence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450188.png" /> is endowed with the structure of a one-dimensional Abelian variety over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450189.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450190.png" /> with that of a finite Abelian group. The order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450191.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450192.png" /> satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450193.png" />. The characteristic polynomial of the [[Frobenius endomorphism|Frobenius endomorphism]] acting on the Tate module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450194.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450195.png" />, is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450196.png" />. Its roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450197.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450198.png" /> are complex-conjugate algebraic integers of modulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450199.png" />. For any finite extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450200.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450201.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450202.png" />, the order of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450203.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450204.png" />. The [[Zeta-function|zeta-function]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450205.png" /> is
+
Let $_$ be an elliptic curve over
 
+
the finite field $_$ with $_$ elements. The set $_$ is always
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450206.png" /></td> </tr></table>
+
non-empty and finite. Hence $_$ is endowed with the structure of a
 
+
one-dimensional Abelian variety over $_$, and $_$ with that of a
For any algebraic integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450207.png" /> of modulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450208.png" /> in some imaginary quadratic field (or in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450209.png" />) one can find an elliptic curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450210.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450211.png" /> such that the order of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450212.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450213.png" />.
+
finite Abelian group. The order $_$ of $_$ satisfies $_$. The
 
+
characteristic polynomial of the
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450214.png" /> be the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450215.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450216.png" />-adic numbers or a finite algebraic extension of it, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450217.png" /> be the ring of integers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450218.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450219.png" /> be an elliptic curve over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450220.png" />, and suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450221.png" /> is non-empty. The group structure turns <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450222.png" /> into a commutative compact one-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450223.png" />-adic Lie group (cf. [[Lie-group-adic|Lie group, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450224.png" />-adic]]). The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450225.png" /> is Pontryagin-dual to the [[Weil–Châtelet group|Weil–Châtelet group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450226.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450227.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450228.png" /> is a Tate curve (see [[#References|[1]]], [[#References|[5]]]) and there exists a canonical uniformization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450229.png" /> analogous to the case of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450230.png" />.
+
[[Frobenius endomorphism|Frobenius endomorphism]] acting on the Tate
 
+
module $_$, $_$, is $_$. Its roots $_$ and $_$ are complex-conjugate
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450231.png" /> be an elliptic curve over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450232.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450233.png" /> is not empty. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450234.png" /> is biregularly isomorphic to the curve (1) with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450235.png" />. Of all curves of the form (1) that are isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450236.png" /> with integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450237.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450238.png" />, one chooses the one for which the absolute value of the discriminant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450239.png" /> is minimal. The conductor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450240.png" /> and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450242.png" />-function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450243.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450244.png" /> are defined as formal products of local factors:
+
algebraic integers of modulus $_$. For any finite extension $_$ of $_$
 
+
of degree $_$, the order of $_$ is $_$. The
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450245.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
[[Zeta-function|zeta-function]] of $_$ is  
 
+
$$_$$
over all prime numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450246.png" /> (see [[#References|[1]]], [[#References|[5]]], [[#References|[13]]]). Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450247.png" /> is some power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450248.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450249.png" /> is a meromorphic function of the complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450250.png" /> that has neither a zero nor a pole at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450251.png" />. To determine the local factors one considers the reduction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450252.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450253.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450254.png" />), which is a plane projective curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450255.png" /> over the residue class field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450256.png" /> and is given in an affine coordinate system by the equation
+
For any algebraic
 
+
integer $_$ of modulus $_$ in some imaginary quadratic field (or in
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450257.png" /></td> </tr></table>
+
$_$) one can find an elliptic curve $_$ over $_$ such that the order
 
+
of $_$ is $_$.
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450258.png" /> be the number of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450259.png" />-points on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450260.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450261.png" /> does not divide <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450262.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450263.png" /> is an elliptic curve over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450264.png" />, and one puts
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450265.png" /></td> </tr></table>
 
 
 
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450266.png" /> divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450267.png" />, then the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450268.png" /> has a multiple root, and one puts
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450269.png" /></td> </tr></table>
 
  
(depending on whether it is a triple or a double root). The product (2) converges in the right half-plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450270.png" />. It has been conjectured that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450271.png" /> has a meromorphic extension to the whole complex plane and that the function
+
Let $_$ be the field $_$ of $_$-adic numbers or a finite algebraic
 +
extension of it, let $_$ be the ring of integers of $_$, let $_$ be an
 +
elliptic curve over $_$, and suppose that $_$ is non-empty. The group
 +
structure turns $_$ into a commutative compact one-dimensional
 +
$_$-adic Lie group (cf.
 +
[[Lie-group-adic|Lie group, $_$-adic]]). The group $_$ is
 +
Pontryagin-dual to the
 +
[[Weil–Châtelet group|Weil–Châtelet group]] $_$. If $_$, then $_$ is a
 +
Tate curve (see
 +
[[#References|[1]]],
 +
[[#References|[5]]]) and there exists a canonical uniformization of
 +
$_$ analogous to the case of $_$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450272.png" /></td> </tr></table>
+
Let $_$ be an elliptic curve over $_$ for which $_$ is not empty. Then
 +
$_$ is biregularly isomorphic to the curve (1) with $_$. Of all curves
 +
of the form (1) that are isomorphic to $_$ with integers $_$ and $_$,
 +
one chooses the one for which the absolute value of the discriminant
 +
$_$ is minimal. The conductor $_$ and the $_$-function $_$ of $_$ are
 +
defined as formal products of local factors:
 +
$$_$$
 +
over all prime
 +
numbers $_$ (see
 +
[[#References|[1]]],
 +
[[#References|[5]]],
 +
[[#References|[13]]]). Here $_$ is some power of $_$, and $_$ is a
 +
meromorphic function of the complex variable $_$ that has neither a
 +
zero nor a pole at $_$. To determine the local factors one considers
 +
the reduction of $_$ modulo $_$ ($_$), which is a plane projective
 +
curve $_$ over the residue class field $_$ and is given in an affine
 +
coordinate system by the equation
 +
$$_$$
 +
Let $_$ be the number of
 +
$_$-points on $_$. If $_$ does not divide $_$, then $_$ is an elliptic
 +
curve over $_$, and one puts
 +
$$_$$
 +
If $_$ divides $_$, then the
 +
polynomial $_$ has a multiple root, and one puts
 +
$$_$$
 +
(depending on
 +
whether it is a triple or a double root). The product (2) converges in
 +
the right half-plane $_$. It has been conjectured that $_$ has a
 +
meromorphic extension to the whole complex plane and that the function
  
(where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450273.png" /> is the [[Gamma-function|gamma-function]]) satisfies the functional equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450275.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450276.png" /> (see [[#References|[5]]], [[#References|[3]]]). This conjecture has been proved for elliptic curves with complex multiplication.
+
$$_$$
 +
(where $_$ is the
 +
[[Gamma-function|gamma-function]]) satisfies the functional equation
 +
$_$ with $_$ (see
 +
[[#References|[5]]],
 +
[[#References|[3]]]). This conjecture has been proved for elliptic
 +
curves with complex multiplication.
  
The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450277.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450278.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450279.png" /> is a finite Abelian group and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450280.png" /> is a free Abelian group of a certain finite rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450281.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450282.png" /> is isomorphic to one of the following 15 groups (see [[#References|[11]]]): <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450283.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450284.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450285.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450286.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450287.png" />. The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450288.png" /> is called the rank of the elliptic curve over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450289.png" />, or its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450291.png" />-rank. Examples are known of elliptic curves over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450292.png" /> of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450293.png" />. There is a conjecture (see [[#References|[1]]], [[#References|[13]]]) that over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450294.png" /> there exist elliptic curves of arbitrary large rank.
+
The group $_$ is isomorphic to $_$, where $_$ is a finite Abelian
 +
group and $_$ is a free Abelian group of a certain finite rank
 +
$_$. $_$ is isomorphic to one of the following 15 groups (see
 +
[[#References|[11]]]): $_$, $_$ or $_$, and $_$, $_$. The number $_$
 +
is called the rank of the elliptic curve over $_$, or its
 +
$_$-rank. Examples are known of elliptic curves over $_$ of rank
 +
$_$. There is a conjecture (see
 +
[[#References|[1]]],
 +
[[#References|[13]]]) that over $_$ there exist elliptic curves of
 +
arbitrary large rank.
  
In the study of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450295.png" /> one uses the Tate height <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450296.png" />, which is a non-negative definite quadratic form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450297.png" /> (see [[#References|[1]]], [[#References|[3]]], [[#References|[8]]], and also [[Height, in Diophantine geometry|Height, in Diophantine geometry]]). For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450298.png" /> the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450299.png" /> is finite. In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450300.png" /> vanishes precisely on the torsion subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450301.png" />.
+
In the study of $_$ one uses the Tate height $_$, which is a
 +
non-negative definite quadratic form on $_$ (see
 +
[[#References|[1]]],
 +
[[#References|[3]]],
 +
[[#References|[8]]], and also
 +
[[Height, in Diophantine geometry|Height, in Diophantine
 +
geometry]]). For any $_$ the set $_$ is finite. In particular, $_$
 +
vanishes precisely on the torsion subgroup of $_$.
  
An important invariant of an elliptic curve is its Tate–Shafarevich group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450302.png" /> (see [[Weil–Châtelet group|Weil–Châtelet group]]). The non-trivial elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450303.png" />, an elliptic curve without <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450304.png" />-points, provide examples of elliptic curves for which the [[Hasse principle|Hasse principle]] fails to hold. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450305.png" /> is periodic and for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450306.png" /> the subgroup of its elements of order dividing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450307.png" /> is finite. For a large number of elliptic curves it has been verified that the 2- and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450308.png" />-components of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450309.png" /> are finite (see [[#References|[1]]], [[#References|[4]]], [[#References|[5]]]). There is a conjecture that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450310.png" /> is finite.
+
An important invariant of an elliptic curve is its Tate–Shafarevich
 +
group $_$ (see
 +
[[Weil–Châtelet group|Weil–Châtelet group]]). The non-trivial elements
 +
of $_$, an elliptic curve without $_$-points, provide examples of
 +
elliptic curves for which the
 +
[[Hasse principle|Hasse principle]] fails to hold. The group $_$ is
 +
periodic and for every $_$ the subgroup of its elements of order
 +
dividing $_$ is finite. For a large number of elliptic curves it has
 +
been verified that the 2- and $_$-components of $_$ are finite (see
 +
[[#References|[1]]],
 +
[[#References|[4]]],
 +
[[#References|[5]]]). There is a conjecture that $_$ is finite.
  
A conjecture of Birch and Swinnerton-Dyer asserts (see [[#References|[5]]], [[#References|[13]]]) that the order of the zero of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450311.png" />-function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450312.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450313.png" /> is equal to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450314.png" />-rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450315.png" />. In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450316.png" /> has a zero at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450317.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450318.png" /> is infinite. So far (1984) the conjecture has not been proved for a single elliptic curve, but for elliptic curves with complex multiplication (and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450319.png" />) it has been established that when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450320.png" /> is infinite, then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450321.png" />-function has a zero at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450322.png" /> (see [[#References|[14]]]). The conjecture of Birch and Swinnerton-Dyer gives the principal term of the asymptotic expansion of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450323.png" />-function as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450324.png" />; in it there occur the orders of the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450325.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450326.png" /> and the determinant of the Tate height [[#References|[1]]]. It can be restated in terms of the Tamagawa numbers (cf. [[Tamagawa number|Tamagawa number]], see [[#References|[7]]]).
+
A conjecture of Birch and Swinnerton-Dyer asserts (see
 +
[[#References|[5]]],
 +
[[#References|[13]]]) that the order of the zero of the $_$-function
 +
$_$ at $_$ is equal to the $_$-rank of $_$. In particular, $_$ has a
 +
zero at $_$ if and only if $_$ is infinite. So far (1984) the
 +
conjecture has not been proved for a single elliptic curve, but for
 +
elliptic curves with complex multiplication (and $_$) it has been
 +
established that when $_$ is infinite, then the $_$-function has a
 +
zero at $_$ (see
 +
[[#References|[14]]]). The conjecture of Birch and Swinnerton-Dyer
 +
gives the principal term of the asymptotic expansion of the
 +
$_$-function as $_$; in it there occur the orders of the groups $_$
 +
and $_$ and the determinant of the Tate height
 +
[[#References|[1]]]. It can be restated in terms of the Tamagawa
 +
numbers (cf.
 +
[[Tamagawa number|Tamagawa number]], see
 +
[[#References|[7]]]).
  
There is a conjecture of Weil that an elliptic curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450327.png" /> has a uniformization by modular functions relative to the congruence subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450328.png" /> of the modular group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450329.png" /> (see [[#References|[5]]] and also [[Zeta-function|Zeta-function]] in algebraic geometry). This conjecture has been proved for elliptic functions with complex multiplication. It is known (see [[#References|[15]]]) that every algebraic curve over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450330.png" /> can be uniformized (cf. [[Uniformization|Uniformization]]) by modular functions relative to some subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450331.png" /> of finite index.
+
There is a conjecture of Weil that an elliptic curve $_$ has a
 +
uniformization by modular functions relative to the congruence
 +
subgroup $_$ of the modular group $_$ (see
 +
[[#References|[5]]] and also
 +
[[Zeta-function|Zeta-function]] in algebraic geometry). This
 +
conjecture has been proved for elliptic functions with complex
 +
multiplication. It is known (see
 +
[[#References|[15]]]) that every algebraic curve over $_$ can be
 +
uniformized (cf.
 +
[[Uniformization|Uniformization]]) by modular functions relative to
 +
some subgroup of $_$ of finite index.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.W.S. Cassels,   "Diophantine equations with special reference to elliptic curves" ''J. London Math. Soc.'' , '''41''' (1966) pp. 193–291</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Hurwitz,   R. Courant,   "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , Springer (1968)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D. Mumford,   "Abelian varieties" , Oxford Univ. Press (1974)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.W.S. Cassels (ed.)  A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1967)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> Yu.I. Manin,   "Cyclotomic fields and modular curves" ''Russian Math. Surveys'' , '''26''' : 6 (1971) pp. 6–78 ''Uspekhi Mat. Nauk'' , '''26''' : 6 (1971) pp. 7–71</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> R. Hartshorne,   "Algebraic geometry" , Springer (1977) pp. 91</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> S. Bloch,   "A note on height pairings, Tamagawa numbers, and the Birch and Swinnnerton-Dyer conjecture" ''Invent. Math.'' , '''58''' (1980) pp. 65–76</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> S. Lang,   "Elliptic curves; Diophantine analysis" , Springer (1978)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> S. Lang,   "Elliptic functions" , Addison-Wesley (1973)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> B. Mazur,   "Rational isogenies of prime degree" ''Invent. Math.'' , '''44''' (1978) pp. 129–162</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> J.-P. Serre (ed.)  P. Deligne (ed.)  W. Kuyk (ed.) , ''Modular functions of one variable. 4'' , ''Lect. notes in math.'' , '''476''' , Springer (1975)</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> J.F. Mestre,   "Construction d'une courbe elliptique de rang <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035450/e035450332.png" />"  ''C.R. Acad. Sci. Paris Sér. 1'' , '''295''' (1982) pp. 643–644</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top"> J. Tate,   "The arithmetic of elliptic curves" ''Invent. Math.'' , '''23''' (1974) pp. 197–206</TD></TR><TR><TD valign="top">[14]</TD> <TD valign="top"> J. Coates,   A. Wiles,   "On the conjecture of Birch and Swinnerton-Dyer" ''Invent. Math.'' , '''39''' (1977) pp. 223–251</TD></TR><TR><TD valign="top">[15]</TD> <TD valign="top"> G.V. Belyi,   "On Galois extensions of a maximal cyclotomic field" ''Math. USSR Izv.'' , '''14''' : 2 (1980) pp. 247–256 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''43''' (1979) pp. 267–276</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD
 +
valign="top"> J.W.S. Cassels, "Diophantine equations with special
 +
reference to elliptic curves" ''J. London Math. Soc.'' , '''41'''
 +
(1966) pp. 193–291</TD></TR><TR><TD valign="top">[2]</TD> <TD
 +
valign="top"> A. Hurwitz, R. Courant, "Vorlesungen über allgemeine
 +
Funktionentheorie und elliptische Funktionen" , Springer
 +
(1968)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">
 +
D. Mumford, "Abelian varieties" , Oxford Univ. Press
 +
(1974)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">
 +
J.W.S. Cassels (ed.)  A. Fröhlich (ed.) , ''Algebraic number theory''
 +
, Acad. Press (1967)</TD></TR><TR><TD valign="top">[5]</TD> <TD
 +
valign="top"> Yu.I. Manin, "Cyclotomic fields and modular curves"
 +
''Russian Math. Surveys'' , '''26''' : 6 (1971) pp. 6–78 ''Uspekhi
 +
Mat. Nauk'' , '''26''' : 6 (1971) pp. 7–71</TD></TR><TR><TD
 +
valign="top">[6]</TD> <TD valign="top"> R. Hartshorne, "Algebraic
 +
geometry" , Springer (1977) pp. 91</TD></TR><TR><TD
 +
valign="top">[7]</TD> <TD valign="top"> S. Bloch, "A note on height
 +
pairings, Tamagawa numbers, and the Birch and Swinnnerton-Dyer
 +
conjecture" ''Invent. Math.'' , '''58''' (1980)
 +
pp. 65–76</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">
 +
S. Lang, "Elliptic curves; Diophantine analysis" , Springer
 +
(1978)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">
 +
S. Lang, "Elliptic functions" , Addison-Wesley (1973)</TD></TR><TR><TD
 +
valign="top">[10]</TD> <TD valign="top"> B. Mazur, "Rational isogenies
 +
of prime degree" ''Invent. Math.'' , '''44''' (1978)
 +
pp. 129–162</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top">
 +
J.-P. Serre (ed.)  P. Deligne (ed.)  W. Kuyk (ed.) , ''Modular
 +
functions of one variable. 4'' , ''Lect. notes in math.'' , '''476'''
 +
, Springer (1975)</TD></TR><TR><TD valign="top">[12]</TD> <TD
 +
valign="top"> J.F. Mestre, "Construction d'une courbe elliptique de
 +
rang $_$" ''C.R. Acad. Sci. Paris Sér. 1'' , '''295''' (1982)
 +
pp. 643–644</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top">
 +
J. Tate, "The arithmetic of elliptic curves" ''Invent. Math.'' ,
 +
'''23''' (1974) pp. 197–206</TD></TR><TR><TD valign="top">[14]</TD>
 +
<TD valign="top"> J. Coates, A. Wiles, "On the conjecture of Birch and
 +
Swinnerton-Dyer" ''Invent. Math.'' , '''39''' (1977)
 +
pp. 223–251</TD></TR><TR><TD valign="top">[15]</TD> <TD valign="top">
 +
G.V. Belyi, "On Galois extensions of a maximal cyclotomic field"
 +
''Math. USSR Izv.'' , '''14''' : 2 (1980) pp. 247–256
 +
''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''43''' (1979)
 +
pp. 267–276</TD></TR></table>
  
  
Line 98: Line 350:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Mazur,   "Modular curves and the Eisenstein ideal" ''Publ. Math. IHES'' , '''47''' (1978) pp. 33–186</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.H. Silverman,   "The arithmetic of elliptic curves" , Springer (1986)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD
 +
valign="top"> B. Mazur, "Modular curves and the Eisenstein ideal"
 +
''Publ. Math. IHES'' , '''47''' (1978) pp. 33–186</TD></TR><TR><TD
 +
valign="top">[a2]</TD> <TD valign="top"> J.H. Silverman, "The
 +
arithmetic of elliptic curves" , Springer (1986)</TD></TR></table>

Revision as of 14:32, 12 September 2011

A non-singular complete algebraic curve of genus 1. The theory of elliptic curves is the source of a large part of contemporary algebraic geometry. But historically the theory of elliptic curves arose as a part of analysis, as the theory of elliptic integrals and elliptic functions (cf. Elliptic integral; Elliptic function).

Examples. A non-singular plane projective cubic curve; the intersection of two non-singular quadrics in three-dimensional projective space; a two-sheeted covering of the projective line ramified at exactly four points; and also a one-dimensional Abelian variety are elliptic curves.

The geometry of an elliptic curve.

Let $X$ be an elliptic curve over an algebraically closed field $k$. Then $X$ is biregularly isomorphic to a plane cubic curve (see [1], [9], [13]). If ${\rm char k} \ne 2,3$, then in the projective plane ${\mathbb P}^2$ there is an affine coordinate system in which the equation of $X$ is in normal Weierstrass form: $$y^2=x^3+ax+b$$

The curve $ $ is non-singular if and

only if the polynomial $_$ does not have multiple zeros, that is, if the discriminant $_$. In $_$ the curve (1) has a unique point at infinity, which is denoted by $_$; $_$ is a point of inflection of (1), and the tangent at $_$ is the line at infinity. The $_$-invariant of an elliptic curve $_$, $$_$$

does not depend on the choice of the

coordinate system. Two elliptic curves have the same $_$-invariant if and only if they are biregularly isomorphic. For any $_$ there is an elliptic curve $_$ over $_$ with $_$.

The group structure on an elliptic curve.

Let $_$ be a fixed point on an elliptic curve $_$. The mapping $_$ assigning to a point $_$ the divisor $_$ on $_$ establishes a one-to-one correspondence between $_$ and the group $_$ of divisor classes of degree $_$ on $_$, that is, the Picard variety of $_$. This correspondence endows $_$ with the structure of an Abelian group that is compatible with the structure of an algebraic variety and that turns $_$ into a one-dimensional Abelian variety $_$; here $_$ is the trivial element of the group. This group structure has the following geometric description. Let $_$ be a smooth plane cubic curve. Then the sum of two points $_$ and $_$ is defined by the rule $_$, where $_$ is the third point of intersection of $_$ with the line passing through $_$ and $_$. In other words, the sum of three points on $_$ vanishes if and only if the points are collinear.

An elliptic curve as a one-dimensional Abelian variety.

Let $_$ denote the endomorphism of multiplication by $_$ in $_$. If $_$ is an elliptic curve with distinguished point $_$, then any rational mapping $_$ has the form $_$, where $_$ and $_$ is a homomorphism of Abelian varieties. Here $_$ is either a constant mapping at $_$ or is an isogeny, that is, there is a homomorphism of Abelian varieties $_$ such that $_$ and $_$ for some $_$ (see [1], [6]).

The automorphism group of an elliptic curve $_$ acts transitively on $_$, and its subgroup $_$ of automorphisms leaving $_$ fixed is non-trivial and finite. Suppose that $_$ is not $_$ or $_$. When $_$ is neither 0 nor $_$, then $_$ consists of the two elements $_$ and $_$. The order of $_$ is 4 when $_$ and 6 when $_$ (see [1], [6], [13]).

An important invariant of an elliptic curve is the endomorphism ring $_$ of the Abelian variety $_$. The mapping $_$ defines an imbedding of $_$ in $_$. If $_$, one says that $_$ is an elliptic curve with complex multiplication. The ring $_$ can be of one of the following types (see [1], [9], [13]): I) $_$; II) $_$, where $_$ is the ring of algebraic integers of an imaginary quadratic field $_$ and $_$; or III) $_$ is a non-commutative $_$-algebra of rank 4 without divisors of zero. In this case $_$ and $_$ is a maximal order in the quaternion algebra over $_$ ramified only at $_$ and $_$. Such elliptic curves exist for all $_$ and are called supersingular; elliptic curves in characteristic $_$ that are not supersingular are said to be ordinary.

The group $_$ of points of an elliptic curve $_$ with orders that divide $_$ has the following structure: $_$ when $_$. For $_$ and ordinary elliptic curves $_$, while for supersingular elliptic curves $_$. For a prime number $_$ the Tate module $_$ is isomorphic to $_$.

Elliptic curves over non-closed fields.

Let $_$ be an elliptic curve over an arbitrary field $_$. If the set of $_$-rational points $_$ of $_$ is not empty, then $_$ is biregularly isomorphic to a plane cubic curve (1) with $_$ ($_$). The point at infinity $_$ of (1) is defined over $_$. As above, one can introduce a group structure on (1), turning $_$ into a one-dimensional Abelian variety over $_$ and turning the set $_$ into an Abelian group with $_$ as trivial element. If $_$ is finitely generated over its prime subfield, then $_$ is a finitely-generated group (the Mordell–Weil theorem).

For any elliptic curve $_$ there is defined the Jacobi variety $_$, which is a one-dimensional Abelian variety over $_$, and $_$ is a principal homogeneous space over $_$. If $_$ is not empty, then the choice of $_$ specifies an isomorphism $_$ under which $_$ becomes the trivial element of $_$. In general, $_$ and $_$ are isomorphic over a finite extension of $_$ (see [1], [4], [13]).

Elliptic curves over the field of complex numbers.

An elliptic curve over $_$ is a compact Riemann surface of genus 1, and vice versa. The group structure turns $_$ into a complex Lie group, which is a one-dimensional complex torus $_$, where $_$ is a lattice in the complex plane $_$. Conversely, any one-dimensional complex torus is an elliptic curve (see [3]). From the topological point of view, an elliptic curve is a two-dimensional torus.

The theory of elliptic curves over $_$ is in essence equivalent to the theory of elliptic functions. An identification of a torus $_$ with an elliptic curve can be effected as follows. The elliptic functions with a given period lattice $_$ form a field generated by the Weierstrass $_$-function (see Weierstrass elliptic functions) and its derivative $_$, which are connected by the relation $$_$$

The

mapping $_$ ($_$) induces an isomorphism between the torus $_$ and the elliptic curve $_$ with equation $_$. The identification of $_$ given by (1) with the torus $_$ is effected by curvilinear integrals of the holomorphic form $_$ and gives an isomorphism $_$.

The description of the set of all elliptic curves as tori $_$ leads to the modular function $_$. Two lattices $_$ and $_$ determine isomorphic tori if and only if they are similar, that is, if one is obtained from the other by multiplication by a complex number. Therefore it may be assumed that $_$ is generated by the numbers 1 and $_$ in $_$. Two lattices with bases $_$ and $_$ are similar if and only if $_$ for an element $_$ of the modular group $_$. The modular function $$_$$

is

also called the absolute invariant; $_$ if and only if $_$ for some $_$, and the function $_$ produces a one-to-one correspondence between the classes of isomorphic elliptic curves over $_$ and the complex numbers. If $_$, then $_$.

An elliptic curve $_$ has complex multiplication if and only if $_$ is an imaginary quadratic irrationality. In this case $_$ is a subring of finite index in the ring of algebraic integers of the imaginary quadratic field $_$. Elliptic curves with complex multiplication are closely connected with the class field theory for imaginary quadratic fields (see [4], [8]).

Arithmetic of elliptic curves.

Let $_$ be an elliptic curve over the finite field $_$ with $_$ elements. The set $_$ is always non-empty and finite. Hence $_$ is endowed with the structure of a one-dimensional Abelian variety over $_$, and $_$ with that of a finite Abelian group. The order $_$ of $_$ satisfies $_$. The characteristic polynomial of the Frobenius endomorphism acting on the Tate module $_$, $_$, is $_$. Its roots $_$ and $_$ are complex-conjugate algebraic integers of modulus $_$. For any finite extension $_$ of $_$ of degree $_$, the order of $_$ is $_$. The zeta-function of $_$ is $$_$$

For any algebraic

integer $_$ of modulus $_$ in some imaginary quadratic field (or in $_$) one can find an elliptic curve $_$ over $_$ such that the order of $_$ is $_$.

Let $_$ be the field $_$ of $_$-adic numbers or a finite algebraic extension of it, let $_$ be the ring of integers of $_$, let $_$ be an elliptic curve over $_$, and suppose that $_$ is non-empty. The group structure turns $_$ into a commutative compact one-dimensional $_$-adic Lie group (cf. Lie group, $_$-adic). The group $_$ is Pontryagin-dual to the Weil–Châtelet group $_$. If $_$, then $_$ is a Tate curve (see [1], [5]) and there exists a canonical uniformization of $_$ analogous to the case of $_$.

Let $_$ be an elliptic curve over $_$ for which $_$ is not empty. Then $_$ is biregularly isomorphic to the curve (1) with $_$. Of all curves of the form (1) that are isomorphic to $_$ with integers $_$ and $_$, one chooses the one for which the absolute value of the discriminant $_$ is minimal. The conductor $_$ and the $_$-function $_$ of $_$ are defined as formal products of local factors: $$_$$

over all prime

numbers $_$ (see [1], [5], [13]). Here $_$ is some power of $_$, and $_$ is a meromorphic function of the complex variable $_$ that has neither a zero nor a pole at $_$. To determine the local factors one considers the reduction of $_$ modulo $_$ ($_$), which is a plane projective curve $_$ over the residue class field $_$ and is given in an affine coordinate system by the equation $$_$$

Let $_$ be the number of

$_$-points on $_$. If $_$ does not divide $_$, then $_$ is an elliptic curve over $_$, and one puts $$_$$

If $_$ divides $_$, then the

polynomial $_$ has a multiple root, and one puts $$_$$

(depending on

whether it is a triple or a double root). The product (2) converges in the right half-plane $_$. It has been conjectured that $_$ has a meromorphic extension to the whole complex plane and that the function

$$_$$

(where $_$ is the

gamma-function) satisfies the functional equation $_$ with $_$ (see [5], [3]). This conjecture has been proved for elliptic curves with complex multiplication.

The group $_$ is isomorphic to $_$, where $_$ is a finite Abelian group and $_$ is a free Abelian group of a certain finite rank $_$. $_$ is isomorphic to one of the following 15 groups (see [11]): $_$, $_$ or $_$, and $_$, $_$. The number $_$ is called the rank of the elliptic curve over $_$, or its $_$-rank. Examples are known of elliptic curves over $_$ of rank $_$. There is a conjecture (see [1], [13]) that over $_$ there exist elliptic curves of arbitrary large rank.

In the study of $_$ one uses the Tate height $_$, which is a non-negative definite quadratic form on $_$ (see [1], [3], [8], and also Height, in Diophantine geometry). For any $_$ the set $_$ is finite. In particular, $_$ vanishes precisely on the torsion subgroup of $_$.

An important invariant of an elliptic curve is its Tate–Shafarevich group $_$ (see Weil–Châtelet group). The non-trivial elements of $_$, an elliptic curve without $_$-points, provide examples of elliptic curves for which the Hasse principle fails to hold. The group $_$ is periodic and for every $_$ the subgroup of its elements of order dividing $_$ is finite. For a large number of elliptic curves it has been verified that the 2- and $_$-components of $_$ are finite (see [1], [4], [5]). There is a conjecture that $_$ is finite.

A conjecture of Birch and Swinnerton-Dyer asserts (see [5], [13]) that the order of the zero of the $_$-function $_$ at $_$ is equal to the $_$-rank of $_$. In particular, $_$ has a zero at $_$ if and only if $_$ is infinite. So far (1984) the conjecture has not been proved for a single elliptic curve, but for elliptic curves with complex multiplication (and $_$) it has been established that when $_$ is infinite, then the $_$-function has a zero at $_$ (see [14]). The conjecture of Birch and Swinnerton-Dyer gives the principal term of the asymptotic expansion of the $_$-function as $_$; in it there occur the orders of the groups $_$ and $_$ and the determinant of the Tate height [1]. It can be restated in terms of the Tamagawa numbers (cf. Tamagawa number, see [7]).

There is a conjecture of Weil that an elliptic curve $_$ has a uniformization by modular functions relative to the congruence subgroup $_$ of the modular group $_$ (see [5] and also Zeta-function in algebraic geometry). This conjecture has been proved for elliptic functions with complex multiplication. It is known (see [15]) that every algebraic curve over $_$ can be uniformized (cf. Uniformization) by modular functions relative to some subgroup of $_$ of finite index.

References

[1] J.W.S. Cassels, "Diophantine equations with special

reference to elliptic curves" J. London Math. Soc. , 41

(1966) pp. 193–291
[2] A. Hurwitz, R. Courant, "Vorlesungen über allgemeine

Funktionentheorie und elliptische Funktionen" , Springer

(1968)
[3]

D. Mumford, "Abelian varieties" , Oxford Univ. Press

(1974)
[4]

J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory

, Acad. Press (1967)
[5] Yu.I. Manin, "Cyclotomic fields and modular curves"

Russian Math. Surveys , 26 : 6 (1971) pp. 6–78 Uspekhi

Mat. Nauk , 26 : 6 (1971) pp. 7–71
[6] R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. 91
[7] S. Bloch, "A note on height

pairings, Tamagawa numbers, and the Birch and Swinnnerton-Dyer conjecture" Invent. Math. , 58 (1980)

pp. 65–76
[8]

S. Lang, "Elliptic curves; Diophantine analysis" , Springer

(1978)
[9] S. Lang, "Elliptic functions" , Addison-Wesley (1973)
[10] B. Mazur, "Rational isogenies

of prime degree" Invent. Math. , 44 (1978)

pp. 129–162
[11]

J.-P. Serre (ed.) P. Deligne (ed.) W. Kuyk (ed.) , Modular functions of one variable. 4 , Lect. notes in math. , 476

, Springer (1975)
[12] J.F. Mestre, "Construction d'une courbe elliptique de

rang $_$" C.R. Acad. Sci. Paris Sér. 1 , 295 (1982)

pp. 643–644
[13]

J. Tate, "The arithmetic of elliptic curves" Invent. Math. ,

23 (1974) pp. 197–206
[14] J. Coates, A. Wiles, "On the conjecture of Birch and

Swinnerton-Dyer" Invent. Math. , 39 (1977)

pp. 223–251
[15]

G.V. Belyi, "On Galois extensions of a maximal cyclotomic field" Math. USSR Izv. , 14 : 2 (1980) pp. 247–256 Izv. Akad. Nauk SSSR Ser. Mat. , 43 (1979)

pp. 267–276


Comments

References

[a1] B. Mazur, "Modular curves and the Eisenstein ideal" Publ. Math. IHES , 47 (1978) pp. 33–186
[a2] J.H. Silverman, "The arithmetic of elliptic curves" , Springer (1986)
How to Cite This Entry:
Elliptic curve. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Elliptic_curve&oldid=16112
This article was adapted from an original article by Yu.G. ZarkhinVal.S. Kulikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article