Namespaces
Variants
Actions

Difference between revisions of "Eilenberg-Moore algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (AUTOMATIC EDIT (latexlist): Replaced 10 formulas out of 12 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
m (fix tex)
 
(One intermediate revision by one other user not shown)
Line 2: Line 2:
 
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 
was used.
 
was used.
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
+
If the TeX and formula formatting is correct and if all png images have been replaced by TeX code, please remove this message and the {{TEX|semi-auto}} category.
  
 
Out of 12 formulas, 10 were replaced by TEX code.-->
 
Out of 12 formulas, 10 were replaced by TEX code.-->
  
{{TEX|semi-auto}}{{TEX|partial}}
+
{{TEX|done}}
 
''Moore–Eilenberg algebra''
 
''Moore–Eilenberg algebra''
  
Given a monad (or [[Triple|triple]]) $T$ in a [[Category|category]] $\mathcal{C}$, a $T$-algebra is a pair $( A , \alpha )$, $\alpha : T A \rightarrow A$, $A \in \mathcal{C}$, such that the diagram
+
Given a monad (or [[triple]]) $T$ in a [[Category|category]] $\mathcal{C}$, a $T$-algebra is a pair $( A , \alpha )$, $\alpha : T A \rightarrow A$, $A \in \mathcal{C}$, such that the diagram
 
+
\begin{equation}
<table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e120/e120080/e1200808.png"/></td> </tr></table>
+
\begin{array}{crccc}
 
+
A & \stackrel{\eta_A}{\rightarrow} & T(A)                &                              & T(T(A)) \\
 +
  & {}_{\mathrm{id}_A}\nwarrow    & \downarrow{}_\alpha & \stackrel{\mu_A}{\leftarrow} & \downarrow{}_{T(\alpha)} \\
 +
  &                                & A                  &                              & T(A)
 +
\end{array}
 +
\end{equation}
 
commutes. Such a $T$-algebra is also called an Eilenberg–Moore algebra. The forgetful functor from the category of Eilenberg–Moore algebras $\mathcal{C} ^ { T }$ to $\mathcal{C}$ has a left adjoint, exhibiting the monad $T$ as coming from a pair of adjoint functors (the Eilenberg–Moore construction).
 
commutes. Such a $T$-algebra is also called an Eilenberg–Moore algebra. The forgetful functor from the category of Eilenberg–Moore algebras $\mathcal{C} ^ { T }$ to $\mathcal{C}$ has a left adjoint, exhibiting the monad $T$ as coming from a pair of adjoint functors (the Eilenberg–Moore construction).
  
See also [[Adjoint functor|Adjoint functor]].
+
See also [[Adjoint functor]].
  
 
====References====
 
====References====
<table><tr><td valign="top">[a1]</td> <td valign="top">  F. Borceux,  "Handbook of categorical algebra: Categories and structures" , '''2''' , Cambridge Univ. Press  (1994)  pp. Chap. 4</td></tr></table>
+
<table>
 +
<tr><td valign="top">[a1]</td> <td valign="top">  F. Borceux,  "Handbook of categorical algebra: Categories and structures" , '''2''' , Cambridge Univ. Press  (1994)  pp. Chap. 4</td></tr>
 +
</table>

Latest revision as of 09:49, 19 July 2020

Moore–Eilenberg algebra

Given a monad (or triple) $T$ in a category $\mathcal{C}$, a $T$-algebra is a pair $( A , \alpha )$, $\alpha : T A \rightarrow A$, $A \in \mathcal{C}$, such that the diagram \begin{equation} \begin{array}{crccc} A & \stackrel{\eta_A}{\rightarrow} & T(A) & & T(T(A)) \\ & {}_{\mathrm{id}_A}\nwarrow & \downarrow{}_\alpha & \stackrel{\mu_A}{\leftarrow} & \downarrow{}_{T(\alpha)} \\ & & A & & T(A) \end{array} \end{equation} commutes. Such a $T$-algebra is also called an Eilenberg–Moore algebra. The forgetful functor from the category of Eilenberg–Moore algebras $\mathcal{C} ^ { T }$ to $\mathcal{C}$ has a left adjoint, exhibiting the monad $T$ as coming from a pair of adjoint functors (the Eilenberg–Moore construction).

See also Adjoint functor.

References

[a1] F. Borceux, "Handbook of categorical algebra: Categories and structures" , 2 , Cambridge Univ. Press (1994) pp. Chap. 4
How to Cite This Entry:
Eilenberg-Moore algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Eilenberg-Moore_algebra&oldid=49964
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article