Namespaces
Variants
Actions

Distribution of power residues and non-residues

From Encyclopedia of Mathematics
Revision as of 21:51, 30 March 2012 by Ulf Rehmann (talk | contribs) (MR/ZBL numbers added)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The distribution among the numbers of those values of for which the congruence

, is solvable (or unsolvable) in integers. Questions on the distribution of power residues and non-residues have been studied most fully in the case modulo a prime number . Let . Then the congruence is solvable for values of in the set and unsolvable for the remaining values (see Two-term congruence). However, comparatively little is known about how these values are distributed among the numbers .

The first results about the distribution of power residues were obtained by C.F. Gauss (see [1]) in 1796. From that time until the work of I.M. Vinogradov only isolated special results were obtained on questions concerning the distribution of power residues and non-residues. In 1915, Vinogradov (see [2]) proved a series of general results about the distribution of power residues and non-residues, and about primitive roots (cf. Primitive root) modulo among the numbers . In particular, he obtained the bound

for the least quadratic non-residue , and the bound

where is the number of distinct prime divisors of , for the least primitive root modulo .

In addition, he made a number of conjectures on the distribution of quadratic residues and non-residues (see Vinogradov hypotheses) which stimulated a series of investigations in this area. Thus, Yu.V. Linnik [3] proved that for sufficiently large , the number of prime numbers in the interval for which does not exceed a certain constant , depending only on . Thus, the prime numbers for which , if they exist at all, are met only very rarely. Another significant step in the work on Vinogradov's conjectures was the theorem of D.A. Burgess [4]: For any fixed sufficiently small , the maximal distance between neighbouring quadratic non-residues satisfies the inequality

In particular, one has

In these inequalities, the constants , depend only on and not on . The proof of Burgess' theorem is very complicated; it is based on the Hasse–Weil theorem on the number of solutions of the hyper-elliptic congruence

the proof of which requires techniques of abstract algebraic geometry. For a simple account of Burgess' theorem see [5], [6].

References

[1] C.F. Gauss, "Untersuchungen über höhere Arithmetik" , A. Maser (1889) (Translated from Latin) MR0188045 Zbl 21.0166.04
[2] I.M. Vinogradov, "Selected works" , Springer (1985) (Translated from Russian) MR0807530 Zbl 0577.01049
[3] Yu.V. Linnik, Dokl. Akad. Nauk SSSR , 36 (1942) pp. 131
[4] D.A. Burgess, "The distribution of quadratic residues and non-residues" Mathematika , 4 : 8 (1957) pp. 106–112 MR0093504 Zbl 0081.27101
[5] S.A. Stepanov, "Constructive methods in the theory of equations over finite fields" Proc. Steklov Inst. Math. , 132 (1975) pp. 271–281 Trudy Mat. Inst. Steklov. , 132 (1973) pp. 237–246 MR0337976
[6] A.A. Karatsuba, "Character sums and primitive roots in finite fields" Soviet Math.-Dokl. , 9 : 3 (1968) pp. 755–757 Dokl. Akad. Nauk SSSR , 180 : 6 (1968) pp. 1287–1289 Zbl 0182.37501
How to Cite This Entry:
Distribution of power residues and non-residues. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Distribution_of_power_residues_and_non-residues&oldid=14183
This article was adapted from an original article by S.A. Stepanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article