Namespaces
Variants
Actions

Distribution modulo one

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The distribution of the fractional parts $\{\alpha_j\}$ of a sequence of real numbers $\alpha_j$, $j=1,2,\dots,$ in the unit interval $[0,1)$. The sequence of fractional parts $\{\alpha_j\}$, $j=1,2,\dots,$ is called uniformly distributed in $[0,1)$ if the equality

$$\lim_{n\to\infty}\frac{\phi_n(a,b)}{n}=b-a$$

holds for any interval $[a,b)\subset[0,1)$, where $\phi_n(a,b)$ is the number of terms among the first $n$ members of $\{\alpha_j\}$, $j=1,2,\dots,$ which belong to $[a,b)$. In this case the sequence $\alpha_j$, $j=1,2,\dots,$ is said to be uniformly distributed modulo one.

Weyl's criterion (see [1]) for a distribution modulo one to be uniform: An infinite sequence of fractional parts $\{\alpha_j\}$, $j=1,2,\dots,$ is uniformly distributed in the unit interval $[0,1)$ if and only if

$$\lim_{n\to\infty}\frac1n\sum_{j=1}^nf(\{\alpha_j\})=\int\limits_0^1f(x)dx$$

for any function $f$ that is Riemann integrable on $[0,1]$. This is equivalent to the following. In order that a sequence $\alpha_j$, $j=1,2,\dots,$ be uniformly distributed modulo one, it is necessary and sufficient that

$$\lim_{n\to\infty}\frac1n\sum_{j=1}^ne^{2\pi im\alpha_j}=0$$

for any integer $m\neq0$. It follows from Weyl's criterion and his estimates for trigonometric sums involving a polynomial $f$,

$$\sum_{x=1}^pe^{2\pi if(x)},$$

that the sequence $\{f(n)\}$, $n=1,2,\dots,$ of fractional parts is uniformly distributed in $[0,1)$ provided that at least one coefficient $a_s$, $1\leq s\leq k$, of the polynomial

$$f(x)=a_kx^k+\dotsb+a_1x$$

is irrational.

The concept of uniform distribution modulo one can be made quantitative by means of the quantity

$$D_n=\sup_{0\leq a<b\leq1}\left|\frac{\phi_n(a,b)}{n}-(b-a)\right|,$$

called the discrepancy of the first $n$ members of the sequence $\{\alpha_j\}$, $j=1,2,\dots$ (see [2], [3]).

References

[1] H. Weyl, "Ueber die Gleichverteilung von Zahlen mod Eins" Math. Ann. , 77 (1916) pp. 313–352
[2] I.M. Vinogradov, "The method of trigonometric sums in the theory of numbers" , Interscience (1954) (Translated from Russian)
[3] L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen , 1 : 2 (1959) (Heft 13, Teil 1)
[a1] E. Hlawka, "Theorie der Gleichverteilung" , B.I. Wissenschaftverlag Mannheim (1979)
[a2] L. Kuipers, H. Niederreiter, "Uniform distribution of sequences" , Wiley (1974) Zbl 0281.10001; repr. Dover (2006) ISBN 0-486-45019-8
How to Cite This Entry:
Distribution modulo one. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Distribution_modulo_one&oldid=54436
This article was adapted from an original article by S.A. Stepanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article