Derived category

From Encyclopedia of Mathematics
Revision as of 17:16, 7 February 2011 by (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

The notion of a derived category has been introduced by J.-L. Verdier in his 1963 notes [a7]. This facilitated a proof of a duality theorem of A. Grothendieck (cf. [a5]). Let be an additive category equipped with an additive automorphism , called the translation functor. A triangle in is a sextuple of objects , , in and morphism , , . One often uses

to denote such a triangle. It is obvious what it meant by a morphism of triangles. The category equipped with a family of triangles, the distinguished triangles, is called a triangulated category if the axioms TR1)–TR4) in [a7] are satisfied.

Writing briefly for a triangle , these axioms are as follows.

TR1) Each triangle isomorphic to a distinguished triangle is distinguished. For each morphism there is a distinguished triangle ; is distinguished.

TR2) is distinguished if and only if is distinguished.

TR3) If , are distinguished and is a morphism, then there is an such that is a morphism of triangles.

TR4) Let , , be three distinguished triangles with , , . Then there exists two morphisms , such that , are morphisms of triangles and such that is a distinguished triangle.

An additive functor between two triangulated categories is called a -functor (or exact functor) if it commutes with the translation functor and preserves distinguished triangles.

To get some feeling for these axioms and the terminology it is (perhaps) useful to keep the example below in mind: the category of complexes over an Abelian category (and algebraic mapping cones, the corresponding long exact sequences, and connecting homomorphisms of long exact sequences). One often writes a distinguished triangle as

where is thought of as a "morphism of degree 1" from (which, by definition, is the same thing as a morphism ). Whence the terminology "triangulated category" . Writing for the group of morphisms one finds straightforwardly from TR1)–TR3) for each distinguished triangle and object of long exact sequences of groups

The next step, still inspired by cohomology and complexes, is to "localize suitably" , i.e. "to find a categorical setting in which morphisms which induce isomorphisms in cohomology can be inverted and thus become isomorphisms" .

Let be a triangulated category. A collection of morphism s in is called a multiplicative system if it satisfies properties (FR1)–(FR5) (given in [a7]).

(FR1) If and are in , then so is . All identity morphisms are in .

(FR2) If is in and , then there are an in and a such that , and (symmetrically) if is in and , then there are an in and a such that .

(FR3) For all there are such that , .

(FR4) If , then also .

(FR5) If and are two distinguished triangles and is a morphism from to with , then there is an such that is a morphism of distinguished triangles.

Axioms (FR1) and (FR2), and to a lesser extent (FR3), are "general" in the setting of categories of fractions (cf. (the comments to) Localization in categories). The other two are special for this particular setting of triangulated categories.

The localization of with respect to is a category together with the canonical functor such that the pair has the universal property: Any functor such that is an isomorphism for all factors uniquely through .

Such a pair exists and, moreover, carries a unique structure of a triangulated category such that is exact. Note that the objects of are the objects of and that a morphism from to in may be represented by a diagram of morphisms in such that .

Let be an Abelian category. Denote by the additive category of complexes of . The translation functor is defined by , , and one often writes instead of [a1]. Denoted by the additive category whose objects are the objects of and whose morphisms are homotopy equivalence classes of morphisms in . Call a triangle distinguished if it is isomorphic to a triangle of the form . Here denotes the maping cone (cf. Mapping-cone construction) of . Similarly one defines (respectively, , respectively, ), the category of bounded below (respectively, bounded above, respectively, bounded) complexes of . A complex is bounded above if for large enough, etc.

Let . A morphism is called a quasi-isomorphism if it induces an isomorphism on cohomology. Let be the collection of all quasi-isomorphisms. The localized category (cf. Localization in categories) is called the derived category of . Similarly one defines (respectively, , respectively, ). Every short exact sequence gives rise to a distinguished triangle in .

Assume that has enough injectives (cf. Injective object). Denote by the collection of injective objects in and let be the triangulated subcategory of consisting of bounded below complexes of injective objects in . The canonical functor induces an equivalence of categories . A similar discussion applies to in case has enough projectives (cf. Projective object of a category).

Finally, let be an Abelian category and let be a thick Abelian subcategory. Define as the full triangulated subcategory of consisting of the complexes whose cohomology objects are in , and put . This is the full subcategory of consisting of those complexes whose cohomology objects are in .

The derived functor.

Let and be Abelian categories. Let be a -functor (where is , , , or b). One says that the right derived functor (respectively, left derived functor ) of exists if the functor (respectively, ) from the category of -functors to the category of sets is representable (cf. Representable functor). In that case (respectively, ) is, by definition, a representative. For every one puts (respectively, ).

Concerning existence one has the following. Suppose is a triangulated subcategory such that: 1) every object of admits a quasi-isomorphism into (respectively, from) an object of ; and 2) for every acyclic object , is acyclic. (An acyclic complex is one whose cohomology is zero.) Then the right derived functor (respectively, left derived functor ) exists and for every object one has (respectively, ).

Let and be Abelian categories and let be an additive left exact (respectively, right exact) functor (cf. Exact functor). Suppose that has enough injective (respectively, projective) objects. Then (respectively, ) exists. The functor (respectively, ) coincides with the usual -th right (respectively, left) derived functor of .

The most important property is the following. Let , be additive left exact functors between Abelian categories. Assume that and have enough injective objects. Assume sends injective objects into -acyclic objects. Then . A similar statement holds for left derived functors. See also Derived functor.

Verdier duality.

The concept of derived categories is very well suited to state and prove a result on duality by Verdier (cf. [a8]). For related topics such as Alexander duality and Poincaré duality see also [a6]. Let and be topological spaces and let be a Noetherian ring. Suppose that and are locally compact and of finite dimension. Let be the Abelian category of sheaves of -modules. This category has enough injective objects. Denote by the derived category. Consider a continuous mapping and let be the functor direct image with proper support. This is an additive left exact functor.

Verdier duality. There exists an additive functor and a natural isomorphism , for all , .

Suppose that and put . This is called the dualizing sheaf on . For any object the Verdier dual of is .


[a1] A.A. Beilinson, J. Bernstein, P. Deligne, "Faisceaux pervers" Astérisque. Analyse et topologie sur les espaces singuliers (I) , 100 (1982)
[a2] A. Borel, et al., "Intersection cohomology" , Birkhäuser (1984)
[a3] P. Deligne, "Cohomology à supports propres" , Sem. Geom. Alg. 4. Exp. 17 , Lect. notes in math. , 305 , Springer (1973) pp. 82–115
[a4] P.-P. Grivel, "Catégories derivées et foncteurs derivés" A. Borel (ed.) et al. (ed.) , Algebraic -modules , Acad. Press (1987) pp. 1–108
[a5] R. Hartshorne, "Residues and duality" , Springer (1966)
[a6] B. Iversen, "Cohomology of sheaves" , Springer (1986)
[a7] J.-L. Verdier, "Categories derivées, Etat 0" , Sem. Geom. Alg. 4 1/2. Cohomologie etale , Lect. notes in math. , 569 , Springer (1977) pp. 262–311
[a8] J.-L. Verdier, "Dualité dans la cohomologie des espaces localement compacts" , Sem. Bourbaki. Exp 300 (1965–1966)
How to Cite This Entry:
Derived category. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by M.G.M. van Doorn (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article