Namespaces
Variants
Actions

Difference between revisions of "Dedekind cut"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Category:Order, lattices, ordered algebraic structures)
(more general definition)
Line 9: Line 9:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Rudin,  "Principles of mathematical analysis" , McGraw-Hill  (1953)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Rudin,  "Principles of mathematical analysis" , McGraw-Hill  (1953)</TD></TR></table>
 +
 +
====Comments====
 +
More generally we may define a Dedekind cut in any [[totally ordered set]] $X$ to be a partition of $X$ into two non-empty sets $A$ and $B$ whose union is $X$, such that $a<b$ for every $a\in A$ and $b\in B$.
  
 
[[Category:Order, lattices, ordered algebraic structures]]
 
[[Category:Order, lattices, ordered algebraic structures]]

Revision as of 14:12, 18 October 2014

cut

A subdivision of the set of real (or only of the rational) numbers (of) $\mathbf R$ into two non-empty sets $A$ and $B$ whose union is $\mathbf R$, such that $a<b$ for every $a\in A$ and $b\in B$. A Dedekind cut is denoted by the symbol $A|B$. The set $A$ is called the lower class, while the set $B$ is called the upper class of $A|B$. Dedekind cuts of the set of rational numbers are used in the construction of the theory of real numbers (cf. Real number). The concept of continuity of the real axis can be formulated in terms of Dedekind cuts of real numbers.

Comments

For the construction of $\mathbf R$ from $\mathbf Q$ using cuts see [a1].

References

[a1] W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1953)

Comments

More generally we may define a Dedekind cut in any totally ordered set $X$ to be a partition of $X$ into two non-empty sets $A$ and $B$ whose union is $X$, such that $a<b$ for every $a\in A$ and $b\in B$.

How to Cite This Entry:
Dedekind cut. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dedekind_cut&oldid=33791
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article