Namespaces
Variants
Actions

Difference between revisions of "De Moivre formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (some tex)
Line 1: Line 1:
{{TEX|want}}
+
 
 +
 
 +
{{TEX|done}}
  
 
The formula expressing the rule for raising a [[Complex number|complex number]], expressed in trigonometric form
 
The formula expressing the rule for raising a [[Complex number|complex number]], expressed in trigonometric form
Line 7: Line 9:
 
to an $n$-th power. According to de Moivre's formula the modulus $\rho$ of the complex number is raised to that power and the argument $\varphi$ is multiplied by the exponent:
 
to an $n$-th power. According to de Moivre's formula the modulus $\rho$ of the complex number is raised to that power and the argument $\varphi$ is multiplied by the exponent:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d0303005.png" /></td> </tr></table>
+
\[ z^n = [\rho(\cos \phi + i \sin \phi)]^n = \rho^n(\cos  n\phi + i \sin n \phi). \]
  
 
The formula was found by A. de Moivre (1707), its modern notation was suggested by L. Euler (1748).
 
The formula was found by A. de Moivre (1707), its modern notation was suggested by L. Euler (1748).
  
De Moivre's formula can be used to express <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d0303006.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d0303007.png" /> in powers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d0303008.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d0303009.png" />:
+
De Moivre's formula can be used to express $ \cos n \phi $ and $ \sin n \phi $ in powers of $ \cos \phi $ and $ \sin \phi $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d03030010.png" /></td> </tr></table>
+
\[ \cos n\phi = \cos^n \phi - \binom{n}{2} \cos^{n-2} \phi \sin^2 \phi + \binom{n}{4}\cos^{n-4}\phi \sin^4\phi - \dots,  \]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d03030011.png" /></td> </tr></table>
+
\[ \sin n\phi = \binom{n}{1}\cos^{n-1}\phi \sin \phi - \binom{n}{3} \cos^{n-3}\phi \sin^3\phi + \dots. \]
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d03030012.png" /></td> </tr></table>
 
  
 
Inversion of de Moivre's formula leads to a formula for extracting roots of a complex number:
 
Inversion of de Moivre's formula leads to a formula for extracting roots of a complex number:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d03030013.png" /></td> </tr></table>
+
\[ [\rho (\cos \phi + i \sin \phi)]^{1/n} = \rho^{1/n}\left( \cos \frac{\phi + 2 \pi k}{n} + i \sin \frac{\phi + 2 \pi k}{n} \right), \quad k = 0, 1, \dots, \]
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d03030014.png" /></td> </tr></table>
 
 
 
 
which is also sometimes called de Moivre's formula.
 
which is also sometimes called de Moivre's formula.
  

Revision as of 03:13, 2 June 2013


The formula expressing the rule for raising a complex number, expressed in trigonometric form \begin{equation} z = \rho(\cos\varphi + i\sin\varphi), \end{equation} to an $n$-th power. According to de Moivre's formula the modulus $\rho$ of the complex number is raised to that power and the argument $\varphi$ is multiplied by the exponent:

\[ z^n = [\rho(\cos \phi + i \sin \phi)]^n = \rho^n(\cos n\phi + i \sin n \phi). \]

The formula was found by A. de Moivre (1707), its modern notation was suggested by L. Euler (1748).

De Moivre's formula can be used to express $ \cos n \phi $ and $ \sin n \phi $ in powers of $ \cos \phi $ and $ \sin \phi $:

\[ \cos n\phi = \cos^n \phi - \binom{n}{2} \cos^{n-2} \phi \sin^2 \phi + \binom{n}{4}\cos^{n-4}\phi \sin^4\phi - \dots, \]

\[ \sin n\phi = \binom{n}{1}\cos^{n-1}\phi \sin \phi - \binom{n}{3} \cos^{n-3}\phi \sin^3\phi + \dots. \]

Inversion of de Moivre's formula leads to a formula for extracting roots of a complex number:

\[ [\rho (\cos \phi + i \sin \phi)]^{1/n} = \rho^{1/n}\left( \cos \frac{\phi + 2 \pi k}{n} + i \sin \frac{\phi + 2 \pi k}{n} \right), \quad k = 0, 1, \dots, \] which is also sometimes called de Moivre's formula.


Comments

References

[a1] A.I. Markushevich, "Theory of functions of a complex variable" , 1 , Chelsea (1977) (Translated from Russian)
How to Cite This Entry:
De Moivre formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=De_Moivre_formula&oldid=29602
This article was adapted from an original article by BSE-3 (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article