Namespaces
Variants
Actions

Difference between revisions of "Darboux vector"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d0302101.png" /> of the instantaneous axis of rotation around which the natural trihedral of a curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d0302102.png" /> is rotating during the uniform movement of a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d0302103.png" /> along the curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d0302104.png" />. The Darboux vector lies in the rectifying plane of the curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d0302105.png" /> and is expressed in terms of the principal normal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d0302106.png" /> and the tangent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d0302107.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d0302108.png" /> by the formula
+
<!--
 +
d0302101.png
 +
$#A+1 = 17 n = 0
 +
$#C+1 = 17 : ~/encyclopedia/old_files/data/D030/D.0300210 Darboux vector
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d0302109.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021011.png" /> are the curvature and the torsion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021013.png" /> is the angle between the Darboux vector and the tangent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021014.png" />. The [[Frénet formulas|Frénet formulas]] may be written with the aid of the Darboux vector as follows:
+
The vector  $  \pmb\delta $
 +
of the instantaneous axis of rotation around which the natural trihedral of a curve  $  L $
 +
is rotating during the uniform movement of a point  $  M $
 +
along the curve  $  L $.
 +
The Darboux vector lies in the rectifying plane of the curve  $  L $
 +
and is expressed in terms of the principal normal  $  \mathbf n $
 +
and the tangent $  \mathbf t $
 +
of $  L $
 +
by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021015.png" /></td> </tr></table>
+
$$
 +
\pmb\delta  = \sqrt {\tau  ^ {2} + \sigma  ^ {2} }
 +
( \mathbf t  \cos  \theta + \mathbf n  \sin  \theta ) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021016.png" /> is the [[Binormal|binormal]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021017.png" />.
+
where $  \tau $
 +
and  $  \sigma $
 +
are the curvature and the torsion of  $  L $
 +
and  $  \theta $
 +
is the angle between the Darboux vector and the tangent to  $  L $.
 +
The [[Frénet formulas|Frénet formulas]] may be written with the aid of the Darboux vector as follows:
 +
 
 +
$$
 +
\dot{\mathbf t}  = [ \pmb\delta , \mathbf t ] ,\ \
 +
\dot{\mathbf n}  = [ \pmb\delta , \mathbf n ] ,\ \
 +
\dot{\mathbf b}  = [ \pmb\delta , \mathbf b ] ,
 +
$$
 +
 
 +
where  $  \mathbf b $
 +
is the [[Binormal|binormal]] of $  L $.
  
 
G. Darboux [[#References|[1]]] was the first to point out the geometric significance of the Darboux vector for the natural trihedral of a space curve.
 
G. Darboux [[#References|[1]]] was the first to point out the geometric significance of the Darboux vector for the natural trihedral of a space curve.
Line 13: Line 46:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G. Darboux,  "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , '''1''' , Gauthier-Villars  (1887)  pp. 1–18</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.F. Kagan,  "Foundations of the theory of surfaces in a tensor setting" , '''1''' , Moscow-Leningrad  (1947)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G. Darboux,  "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , '''1''' , Gauthier-Villars  (1887)  pp. 1–18</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.F. Kagan,  "Foundations of the theory of surfaces in a tensor setting" , '''1''' , Moscow-Leningrad  (1947)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 17:32, 5 June 2020


The vector $ \pmb\delta $ of the instantaneous axis of rotation around which the natural trihedral of a curve $ L $ is rotating during the uniform movement of a point $ M $ along the curve $ L $. The Darboux vector lies in the rectifying plane of the curve $ L $ and is expressed in terms of the principal normal $ \mathbf n $ and the tangent $ \mathbf t $ of $ L $ by the formula

$$ \pmb\delta = \sqrt {\tau ^ {2} + \sigma ^ {2} } ( \mathbf t \cos \theta + \mathbf n \sin \theta ) , $$

where $ \tau $ and $ \sigma $ are the curvature and the torsion of $ L $ and $ \theta $ is the angle between the Darboux vector and the tangent to $ L $. The Frénet formulas may be written with the aid of the Darboux vector as follows:

$$ \dot{\mathbf t} = [ \pmb\delta , \mathbf t ] ,\ \ \dot{\mathbf n} = [ \pmb\delta , \mathbf n ] ,\ \ \dot{\mathbf b} = [ \pmb\delta , \mathbf b ] , $$

where $ \mathbf b $ is the binormal of $ L $.

G. Darboux [1] was the first to point out the geometric significance of the Darboux vector for the natural trihedral of a space curve.

References

[1] G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 1 , Gauthier-Villars (1887) pp. 1–18
[2] V.F. Kagan, "Foundations of the theory of surfaces in a tensor setting" , 1 , Moscow-Leningrad (1947) (In Russian)

Comments

The natural trihedral (a name used by S. Sternberg [a1]) is commonly called Frénet frame (also Frénet trihedron).

References

[a1] S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964)
[a2] W. Blaschke, K. Leichtweiss, "Elementare Differentialgeometrie" , Springer (1973)
How to Cite This Entry:
Darboux vector. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Darboux_vector&oldid=14668
This article was adapted from an original article by E.V. Shikin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article