Namespaces
Variants
Actions

Difference between revisions of "Curvature transformation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027370/c0273701.png" /> of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027370/c0273702.png" /> of vector fields on a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027370/c0273703.png" />, depending linearly on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027370/c0273704.png" /> and given by the formula
+
<!--
 +
c0273701.png
 +
$#A+1 = 12 n = 0
 +
$#C+1 = 12 : ~/encyclopedia/old_files/data/C027/C.0207370 Curvature transformation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027370/c0273705.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027370/c0273706.png" /> is the [[Covariant derivative|covariant derivative]] in the direction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027370/c0273707.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027370/c0273708.png" /> is the Lie bracket of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027370/c0273709.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027370/c02737010.png" />. The mapping
+
A mapping  $  R ( X, Y) $
 +
of the space  $  {\mathcal T} ( M) $
 +
of vector fields on a manifold  $  M $,
 +
depending linearly on  $  X, Y \in {\mathcal T} ( M) $
 +
and given by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027370/c02737011.png" /></td> </tr></table>
+
$$
 +
R ( X, Y) Z  = \
 +
\nabla _ {X} \nabla _ {Y} Z -
 +
\nabla _ {Y} \nabla _ {X} Z -
 +
\nabla _ {[ X, Y] }  Z;
 +
$$
  
is the [[Curvature tensor|curvature tensor]] of the [[Linear connection|linear connection]] defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027370/c02737012.png" />.
+
here  $  \nabla _ {X} $
 +
is the [[Covariant derivative|covariant derivative]] in the direction of  $  X $
 +
and  $  [ X, Y] $
 +
is the Lie bracket of  $  X $
 +
and  $  Y $.
 +
The mapping
 +
 
 +
$$
 +
R  \equiv \
 +
R ( X, Y) Z:  {\mathcal T}  ^ {3} ( M)  \rightarrow  {\mathcal T} ( M)
 +
$$
 +
 
 +
is the [[Curvature tensor|curvature tensor]] of the [[Linear connection|linear connection]] defined by $  \nabla _ {X} $.

Latest revision as of 17:31, 5 June 2020


A mapping $ R ( X, Y) $ of the space $ {\mathcal T} ( M) $ of vector fields on a manifold $ M $, depending linearly on $ X, Y \in {\mathcal T} ( M) $ and given by the formula

$$ R ( X, Y) Z = \ \nabla _ {X} \nabla _ {Y} Z - \nabla _ {Y} \nabla _ {X} Z - \nabla _ {[ X, Y] } Z; $$

here $ \nabla _ {X} $ is the covariant derivative in the direction of $ X $ and $ [ X, Y] $ is the Lie bracket of $ X $ and $ Y $. The mapping

$$ R \equiv \ R ( X, Y) Z: {\mathcal T} ^ {3} ( M) \rightarrow {\mathcal T} ( M) $$

is the curvature tensor of the linear connection defined by $ \nabla _ {X} $.

How to Cite This Entry:
Curvature transformation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Curvature_transformation&oldid=15235
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article