Namespaces
Variants
Actions

Difference between revisions of "Covering homotopy"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fixing linebreaks, etc.)
 
(One intermediate revision by one other user not shown)
Line 11: Line 11:
 
{{TEX|done}}
 
{{TEX|done}}
  
''for a homotopy  $  F _ {t} $
+
''for a homotopy  $  F _ {t} $ of a mapping  $  F _ {0} :  Z \rightarrow Y $, given a mapping  $  p:  X \rightarrow Y $''
of a mapping  $  F _ {0} :  Z \rightarrow Y $,  
 
given a mapping  $  p:  X \rightarrow Y $''
 
  
 
A homotopy  $  G _ {t} :  Z \rightarrow X $
 
A homotopy  $  G _ {t} :  Z \rightarrow X $
Line 24: Line 22:
 
for any homotopy  $  F _ {t} :  Z \rightarrow Y $
 
for any homotopy  $  F _ {t} :  Z \rightarrow Y $
 
from a paracompactum  $  Z $
 
from a paracompactum  $  Z $
and for any  $  G _ {0} $(
+
and for any  $  G _ {0} $ ($  pG _ {0} = F _ {0} $),  
$  pG _ {0} = F _ {0} $),  
 
 
an extension of  $  G _ {0} $
 
an extension of  $  G _ {0} $
 
to a covering homotopy  $  G _ {t} $
 
to a covering homotopy  $  G _ {t} $
Line 35: Line 32:
 
Let  $  X $
 
Let  $  X $
 
and  $  Y $
 
and  $  Y $
be arcwise connected and let  $  P _ {A} $
+
be [[Arcwise connected space|arcwise connected]] and let  $  P _ {A} $
be the path space of  $  A $(
+
be the path space of  $  A $ (i.e. the space of continuous mappings  $  q:  [ 0, 1] \rightarrow A $).  
i.e. the space of continuous mappings  $  q:  [ 0, 1] \rightarrow A $).  
 
 
Consider a continuous mapping
 
Consider a continuous mapping
  

Latest revision as of 05:07, 7 January 2022


for a homotopy $ F _ {t} $ of a mapping $ F _ {0} : Z \rightarrow Y $, given a mapping $ p: X \rightarrow Y $

A homotopy $ G _ {t} : Z \rightarrow X $ such that $ pG _ {t} = F _ {t} $. In this situation, if the covering mapping $ G _ {0} $ for $ F _ {0} $ is prescribed in advance, one says that $ G _ {t} $ extends $ G _ {0} $. The covering homotopy axiom, in its strong version, requires that, for a given mapping $ p: X \rightarrow Y $, for any homotopy $ F _ {t} : Z \rightarrow Y $ from a paracompactum $ Z $ and for any $ G _ {0} $ ($ pG _ {0} = F _ {0} $), an extension of $ G _ {0} $ to a covering homotopy $ G _ {t} $ exists. In that case $ p $ is said to be a Hurewicz fibration. The most important example is provided by the locally trivial fibre bundles (cf. Locally trivial fibre bundle). If the covering homotopy property is only required to hold in the case that $ Z $ is a finite polyhedron, $ p $ is called a Serre fibration.

Let $ X $ and $ Y $ be arcwise connected and let $ P _ {A} $ be the path space of $ A $ (i.e. the space of continuous mappings $ q: [ 0, 1] \rightarrow A $). Consider a continuous mapping

$$ \mu : D \rightarrow P _ {X} , $$

where

$$ D = \ \{ {( x, q) } : {x \in X, q \in P _ {Y} , p ( x) = q ( 0) } \} \subset \ X \times P _ {Y} , $$

and assume that $ \mu ( x, q) $ begins at a point $ x $ and covers $ q $. Then the formula $ G _ {t} ( x) = \mu ( G _ {0} ( x), F _ {t} ( x)) $ yields an extension of $ G _ {0} $ to a covering homotopy $ G _ {t} $. In particular, a mapping $ M $ satisfying these conditions can be defined naturally for a covering, and also for a smooth vector bundle with a fixed connection. The validity of the covering homotopy axiom in Serre's formulation makes it possible to construct the exact homotopy sequence of a fibration (see Homotopy group).

Comments

Thus, a covering homotopy is a lifting of a given homotopy (a homotopy lifting). The covering homotopy property is dual to the homotopy extension property, which defines the notion of a cofibration.

References

[a1] E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) pp. Chapt. 2
How to Cite This Entry:
Covering homotopy. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Covering_homotopy&oldid=46548
This article was adapted from an original article by A.V. Chernavskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article