Namespaces
Variants
Actions

Difference between revisions of "Covering homotopy"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fixing linebreaks, etc.)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
''for a homotopy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c0269401.png" /> of a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c0269402.png" />, given a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c0269403.png" />''
+
<!--
 +
c0269401.png
 +
$#A+1 = 33 n = 0
 +
$#C+1 = 33 : ~/encyclopedia/old_files/data/C026/C.0206940 Covering homotopy
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A homotopy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c0269404.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c0269405.png" />. In this situation, if the covering mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c0269406.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c0269407.png" /> is prescribed in advance, one says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c0269408.png" /> extends <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c0269409.png" />. The covering homotopy axiom, in its strong version, requires that, for a given mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694010.png" />, for any homotopy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694011.png" /> from a paracompactum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694012.png" /> and for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694013.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694014.png" />), an extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694015.png" /> to a covering homotopy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694016.png" /> exists. In that case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694017.png" /> is said to be a Hurewicz fibration. The most important example is provided by the locally trivial fibre bundles (cf. [[Locally trivial fibre bundle|Locally trivial fibre bundle]]). If the covering homotopy property is only required to hold in the case that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694018.png" /> is a finite polyhedron, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694019.png" /> is called a Serre fibration.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694021.png" /> be arcwise connected and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694022.png" /> be the path space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694023.png" /> (i.e. the space of continuous mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694024.png" />). Consider a continuous mapping
+
''for a homotopy  $  F _ {t} $ of a mapping  $  F _ {0} : Z \rightarrow Y $, given a mapping $  p:  X \rightarrow Y $''
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694025.png" /></td> </tr></table>
+
A homotopy  $  G _ {t} : Z \rightarrow X $
 +
such that  $  pG _ {t} = F _ {t} $.
 +
In this situation, if the covering mapping  $  G _ {0} $
 +
for  $  F _ {0} $
 +
is prescribed in advance, one says that  $  G _ {t} $
 +
extends  $  G _ {0} $.
 +
The covering homotopy axiom, in its strong version, requires that, for a given mapping  $  p: X \rightarrow Y $,
 +
for any homotopy  $  F _ {t} : Z \rightarrow Y $
 +
from a paracompactum  $  Z $
 +
and for any  $  G _ {0} $ ($  pG _ {0} = F _ {0} $),
 +
an extension of  $  G _ {0} $
 +
to a covering homotopy  $  G _ {t} $
 +
exists. In that case  $  p $
 +
is said to be a Hurewicz fibration. The most important example is provided by the locally trivial fibre bundles (cf. [[Locally trivial fibre bundle|Locally trivial fibre bundle]]). If the covering homotopy property is only required to hold in the case that  $  Z $
 +
is a finite polyhedron,  $  p $
 +
is called a Serre fibration.
  
where
+
Let  $  X $
 +
and  $  Y $
 +
be [[Arcwise connected space|arcwise connected]] and let  $  P _ {A} $
 +
be the path space of  $  A $ (i.e. the space of continuous mappings  $  q:  [ 0, 1] \rightarrow A $).
 +
Consider a continuous mapping
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694026.png" /></td> </tr></table>
+
$$
 +
\mu : D  \rightarrow  P _ {X} ,
 +
$$
  
and assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694027.png" /> begins at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694028.png" /> and covers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694029.png" />. Then the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694030.png" /> yields an extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694031.png" /> to a covering homotopy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694032.png" />. In particular, a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026940/c02694033.png" /> satisfying these conditions can be defined naturally for a [[Covering|covering]], and also for a smooth vector bundle with a fixed connection. The validity of the covering homotopy axiom in Serre's formulation makes it possible to construct the exact homotopy sequence of a fibration (see [[Homotopy group|Homotopy group]]).
+
where
  
 +
$$
 +
D  = \
 +
\{ {( x, q) } : {x \in X, q \in P _ {Y} , p ( x) = q ( 0) } \}
 +
\subset  \
 +
X \times P _ {Y} ,
 +
$$
  
 +
and assume that  $  \mu ( x, q) $
 +
begins at a point  $  x $
 +
and covers  $  q $.
 +
Then the formula  $  G _ {t} ( x) = \mu ( G _ {0} ( x), F _ {t} ( x)) $
 +
yields an extension of  $  G _ {0} $
 +
to a covering homotopy  $  G _ {t} $.
 +
In particular, a mapping  $  M $
 +
satisfying these conditions can be defined naturally for a [[Covering|covering]], and also for a smooth vector bundle with a fixed connection. The validity of the covering homotopy axiom in Serre's formulation makes it possible to construct the exact homotopy sequence of a fibration (see [[Homotopy group|Homotopy group]]).
  
 
====Comments====
 
====Comments====

Latest revision as of 05:07, 7 January 2022


for a homotopy $ F _ {t} $ of a mapping $ F _ {0} : Z \rightarrow Y $, given a mapping $ p: X \rightarrow Y $

A homotopy $ G _ {t} : Z \rightarrow X $ such that $ pG _ {t} = F _ {t} $. In this situation, if the covering mapping $ G _ {0} $ for $ F _ {0} $ is prescribed in advance, one says that $ G _ {t} $ extends $ G _ {0} $. The covering homotopy axiom, in its strong version, requires that, for a given mapping $ p: X \rightarrow Y $, for any homotopy $ F _ {t} : Z \rightarrow Y $ from a paracompactum $ Z $ and for any $ G _ {0} $ ($ pG _ {0} = F _ {0} $), an extension of $ G _ {0} $ to a covering homotopy $ G _ {t} $ exists. In that case $ p $ is said to be a Hurewicz fibration. The most important example is provided by the locally trivial fibre bundles (cf. Locally trivial fibre bundle). If the covering homotopy property is only required to hold in the case that $ Z $ is a finite polyhedron, $ p $ is called a Serre fibration.

Let $ X $ and $ Y $ be arcwise connected and let $ P _ {A} $ be the path space of $ A $ (i.e. the space of continuous mappings $ q: [ 0, 1] \rightarrow A $). Consider a continuous mapping

$$ \mu : D \rightarrow P _ {X} , $$

where

$$ D = \ \{ {( x, q) } : {x \in X, q \in P _ {Y} , p ( x) = q ( 0) } \} \subset \ X \times P _ {Y} , $$

and assume that $ \mu ( x, q) $ begins at a point $ x $ and covers $ q $. Then the formula $ G _ {t} ( x) = \mu ( G _ {0} ( x), F _ {t} ( x)) $ yields an extension of $ G _ {0} $ to a covering homotopy $ G _ {t} $. In particular, a mapping $ M $ satisfying these conditions can be defined naturally for a covering, and also for a smooth vector bundle with a fixed connection. The validity of the covering homotopy axiom in Serre's formulation makes it possible to construct the exact homotopy sequence of a fibration (see Homotopy group).

Comments

Thus, a covering homotopy is a lifting of a given homotopy (a homotopy lifting). The covering homotopy property is dual to the homotopy extension property, which defines the notion of a cofibration.

References

[a1] E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) pp. Chapt. 2
How to Cite This Entry:
Covering homotopy. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Covering_homotopy&oldid=12314
This article was adapted from an original article by A.V. Chernavskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article