Namespaces
Variants
Actions

Cotorsion-free group

From Encyclopedia of Mathematics
Revision as of 17:31, 5 June 2020 by Ulf Rehmann (talk | contribs) (tex encoded by computer)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


An Abelian group is cotorsion-free if it does not contain any non-zero cotorsion group. More explicitly, this means that it contains no subgroup isomorphic to the additive group $ \mathbf Q $ of rational numbers, or to the additive group of $ p $- adic integers for any prime $ p $, and contains no cyclic group of prime order (thus, it is torsion-free). Equivalently, an Abelian group $ A $ is cotorsion-free if and only if $ { \mathop{\rm Hom} } ( {\widetilde{\mathbf Z} } ,A ) = 0 $, where $ {\widetilde{\mathbf Z} } $ denotes the completion of the group $ \mathbf Z $ of integers in its $ \mathbf Z $- adic topology. Cotorsion-free rings are rings (cf. Ring) whose additive groups are cotorsion-free Abelian groups. These rings play a distinguished role in the realization of rings as endomorphism rings of Abelian groups.

The celebrated theorem of Corner [a1] states that any countable cotorsion-free ring $ R $ with identity is isomorphic to the endomorphism ring of a countable reduced torsion-free Abelian group $ A $. Moreover, if the additive group of $ R $ has finite rank $ n $, then $ A $ can be chosen to have rank at most $ 2n $. Corner's theorem has been generalized in various directions, notably to rings of arbitrary cardinality. The best result is due to R. Göbel and S. Shelah [a3]: Let $ R $ be a cotorsion-free ring with identity and $ \lambda $ a cardinal number such that $ \lambda = \lambda ^ {\aleph _ {0} } \geq | R | $. There are $ 2 ^ \lambda $ cotorsion-free groups $ A _ {i} $ of cardinality $ \lambda $ whose endomorphism rings are isomorphic to $ R $ such that $ { \mathop{\rm Hom} } ( A _ {i} , A _ {j} ) = 0 $ for $ i \neq j $.

These results have several applications to the construction of counterexamples for torsion-free Abelian groups, e.g. to Kaplansky's test problems. Another consequence is the existence of arbitrarily large indecomposable Abelian groups. There is a topological version of the above theorem. If the endomorphism ring of an Abelian group $ A $ is equipped with the finite topology, then it becomes a complete Hausdorff topological ring (cf. also Hausdorff space). The Corner–Göbel theorem [a2] states that a topological ring $ R $ with identity is isomorphic to the finitely topologized endomorphism ring of a cotorsion-free Abelian group $ A $ if and only if $ R $ is complete Hausdorff in its topology and admits a base of neighbourhoods of $ 0 $ consisting of left ideals $ N $ such that $ A/N $ is cotorsion-free (the endomorphisms act on the left). The Göbel–Shelah theorem [a3] generalizes to cotorsion-free algebras over commutative domains. The proof relies on the most useful black box principle.

References

[a1] A.L.S. Corner, "Every countable reduced torsion-free ring is an endomorphism ring" Proc. London Math. Soc. , 13 (1963) pp. 687–710
[a2] A.L.S. Corner, R. Göbel, "Prescribing endomorphism algebras, a unified treatment" Proc. London Math. Soc. , 50 (1985) pp. 447–479
[a3] R. Göbel, S. Shelah, "Modules over arbitrary domains" Math. Z. , 188 (1985) pp. 325–337
How to Cite This Entry:
Cotorsion-free group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cotorsion-free_group&oldid=18619
This article was adapted from an original article by L. Fuchs (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article