Namespaces
Variants
Actions

Cosine amplitude

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


elliptic cosine

One of the three basic Jacobi elliptic functions, denoted by

$$ \mathop{\rm cn} u = \ \mathop{\rm cn} ( u , k) = \ \cosam u . $$

The cosine amplitude is expressible in terms of the Weierstrass sigma-functions, the Jacobi theta-functions or a power series, as follows:

$$ \mathop{\rm cn} u = \ \mathop{\rm cn} ( u, k) = \ \frac{\sigma _ {1} ( u) }{\sigma _ {3} ( u) } = \ \frac{\theta _ {0} ( 0) \theta _ {2} ( \upsilon ) }{\theta _ {2} ( 0) \theta _ {0} ( \upsilon ) } = $$

$$ = \ 1 - \frac{u ^ {2} }{2! } + ( 1 + 4k ^ {2} ) \frac{u ^ {4} }{4! } - ( 1 + 44k ^ {2} + 16k ^ {4} ) \frac{u ^ {6} }{6! } + \dots , $$

where $ k $ is the modulus of the elliptic function, $ 0 \leq k \leq 1 $; $ \upsilon = u/2 \omega $, and $ 2 \omega = \pi \theta _ {3} ^ {2} ( 0) $. For $ k = 0, 1 $ one has, respectively, $ \mathop{\rm cn} ( u , 0) = \cos u $, $ \mathop{\rm cn} ( u , 1) = 1/ \cosh u $.

References

[1] A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , 2 , Springer (1964) pp. Chapt. 3

Comments

More on the function $ \mathop{\rm cn} u $, e.g. derivatives, evenness, behaviour on the real line, etc. can be found in [a1].

References

[a1] A.I. Markushevich, "Theory of functions of a complex variable" , 3 , Chelsea (1977) (Translated from Russian)
How to Cite This Entry:
Cosine amplitude. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cosine_amplitude&oldid=46531
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article