Namespaces
Variants
Actions

Difference between revisions of "Continuity theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
 
Line 7: Line 7:
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559011.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559011.png" /></td> </tr></table>
  
Then if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559012.png" /> converges to some bounded set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559014.png" /> to a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559015.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559017.png" /> has compact closure in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559018.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559019.png" /> has compact closure in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559020.png" />. If for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559021.png" /> one takes analytic hypersurfaces and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559022.png" /> their boundaries <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559023.png" />, one obtains the Behnke–Sommer theorem (see [[#References|[1]]]). Hence it follows that every domain of holomorphy is pseudo-convex. Applied to a specific function, certain modifications of the continuity theorem are known as theorems on "analytic discs" . For example, the strong theorem on analytic "discs" asserts the following. Suppose that in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559024.png" /> a Jordan curve of the form
+
Then if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559012.png" /> converges to some bounded set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559014.png" /> to a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559015.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559017.png" /> has compact closure in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559018.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559019.png" /> has compact closure in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559020.png" />. If for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559021.png" /> one takes analytic hypersurfaces and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559022.png" /> their boundaries <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559023.png" />, one obtains the Behnke–Sommer theorem (see [[#References|[1]]]). Hence it follows that every domain of holomorphy is pseudo-convex. Applied to a specific function, certain modifications of the continuity theorem are known as theorems on "analytic discs" . For example, the strong theorem on analytic "discs" asserts the following. Suppose that in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559024.png" /> a Jordan curve of the form
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559025.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559025.png" /></td> </tr></table>
  
is given. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559027.png" />, be a family of domains in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559028.png" />-plane having the property that for any compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559029.png" /> there is a number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559030.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559031.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559032.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559033.png" /> is holomorphic at the points of the "discs"  
+
is given. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559027.png" />, be a family of domains in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559028.png" />-plane having the property that for any compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559029.png" /> there is a number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559030.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559031.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559032.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559033.png" /> is holomorphic at the points of the "discs"  
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559034.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559034.png" /></td> </tr></table>
  
and at one point of the limiting "disc"  
+
and at one point of the limiting "disc"  
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559035.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559035.png" /></td> </tr></table>
  
then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559036.png" /> is holomorphic also at all points of the limiting "disc" . Theorems on "analytic discs" are very useful in the holomorphic extension of domains and in constructing envelopes of holomorphy (cf. [[Holomorphic envelope|Holomorphic envelope]]), for example, in the proof of Bochner's theorem on the envelope of holomorphy of a tube domain, of the Osgood–Brown theorem, and of the theorem on "imbedded edges" , "the edge-of-the-wedge" , "C-convex hulls" , and others. The continuity principles given go back to the [[Hartogs theorem|Hartogs theorem]] on removable singularities (1916) for holomorphic functions of several complex variables.
+
then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025590/c02559036.png" /> is holomorphic also at all points of the limiting "disc" . Theorems on "analytic discs" are very useful in the holomorphic extension of domains and in constructing envelopes of holomorphy (cf. [[Holomorphic envelope|Holomorphic envelope]]), for example, in the proof of Bochner's theorem on the envelope of holomorphy of a tube domain, of the Osgood–Brown theorem, and of the theorem on "imbedded edges" , "the edge-of-the-wedge" , "C-convex hulls" , and others. The continuity principles given go back to the [[Hartogs theorem|Hartogs theorem]] on removable singularities (1916) for holomorphic functions of several complex variables.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Behnke,   P. Thullen,   "Theorie der Funktionen meherer komplexer Veränderlichen" , Springer (1970) (Elraged &amp; Revised Edition. Original: 1934)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.S. Vladimirov,   "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B.V. Shabat,   "Introduction of complex analysis" , '''2''' , Moscow (1976) (In Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Behnke, P. Thullen, "Theorie der Funktionen meherer komplexer Veränderlichen" , Springer (1970) (Elraged &amp; Revised Edition. Original: 1934)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''2''' , Moscow (1976) (In Russian) {{MR|}} {{ZBL|0799.32001}} {{ZBL|0732.32001}} {{ZBL|0732.30001}} {{ZBL|0578.32001}} {{ZBL|0574.30001}} </TD></TR></table>
  
  
Line 30: Line 30:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.G. Krantz,   "Function theory of several complex variables" , Wiley (1982) pp. Chapt. 3</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.M. Range,   "Holomorphic functions and integral representation in several complex variables" , Springer (1986) pp. Chapt. 2</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.G. Krantz, "Function theory of several complex variables" , Wiley (1982) pp. Chapt. 3 {{MR|0635928}} {{ZBL|0471.32008}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.M. Range, "Holomorphic functions and integral representation in several complex variables" , Springer (1986) pp. Chapt. 2 {{MR|0847923}} {{ZBL|}} </TD></TR></table>

Latest revision as of 16:56, 15 April 2012

continuity principle

Let be a domain of holomorphy in , , and let and , be two sequences of sets, with compact closures in , for which the maximum modulus principle holds for functions that are holomorphic in , that is,

Then if converges to some bounded set and to a set , and if and has compact closure in , then has compact closure in . If for one takes analytic hypersurfaces and for their boundaries , one obtains the Behnke–Sommer theorem (see [1]). Hence it follows that every domain of holomorphy is pseudo-convex. Applied to a specific function, certain modifications of the continuity theorem are known as theorems on "analytic discs" . For example, the strong theorem on analytic "discs" asserts the following. Suppose that in a Jordan curve of the form

is given. Let , , be a family of domains in the -plane having the property that for any compact set there is a number such that for all . If is holomorphic at the points of the "discs"

and at one point of the limiting "disc"

then is holomorphic also at all points of the limiting "disc" . Theorems on "analytic discs" are very useful in the holomorphic extension of domains and in constructing envelopes of holomorphy (cf. Holomorphic envelope), for example, in the proof of Bochner's theorem on the envelope of holomorphy of a tube domain, of the Osgood–Brown theorem, and of the theorem on "imbedded edges" , "the edge-of-the-wedge" , "C-convex hulls" , and others. The continuity principles given go back to the Hartogs theorem on removable singularities (1916) for holomorphic functions of several complex variables.

References

[1] H. Behnke, P. Thullen, "Theorie der Funktionen meherer komplexer Veränderlichen" , Springer (1970) (Elraged & Revised Edition. Original: 1934)
[2] V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)
[3] B.V. Shabat, "Introduction of complex analysis" , 2 , Moscow (1976) (In Russian) Zbl 0799.32001 Zbl 0732.32001 Zbl 0732.30001 Zbl 0578.32001 Zbl 0574.30001


Comments

The continuity principle is also known as Hartogs' Kontinuitätssatz (Hartogs' continuity theorem).

References

[a1] S.G. Krantz, "Function theory of several complex variables" , Wiley (1982) pp. Chapt. 3 MR0635928 Zbl 0471.32008
[a2] R.M. Range, "Holomorphic functions and integral representation in several complex variables" , Springer (1986) pp. Chapt. 2 MR0847923
How to Cite This Entry:
Continuity theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Continuity_theorem&oldid=14214
This article was adapted from an original article by V.S. Vladimirov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article