Namespaces
Variants
Actions

Continuity equation

From Encyclopedia of Mathematics
Revision as of 12:28, 30 December 2018 by Ivan (talk | contribs) (TeX)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


One of the basic equations in hydrodynamics, expressing the law of conservation of mass for any volume of a moving fluid (or gas). In Euler variables the continuity equation has the form

\[ \frac{\partial \rho}{\partial t } + \text{div}(\rho \mathbf{v}) \equiv \frac{\partial \rho}{\partial t} + \frac{\partial (\rho v_x)}{\partial x} + \frac{\partial (\rho v_y)}{\partial y} + \frac{\partial (\rho v_z)}{\partial z} = 0, \]

where $ \rho $ is the density of the fluid, $ \mathbf{v} $ is its velocity at a given point, and $ v_x, v_y, v_z $ are the projections of the velocity on the coordinate axes. If the fluid is incompressible $ (\rho = \text{const}) $, then the continuity equation takes the form

\[ \text{div } \mathbf{v} = 0 \quad \text{or} \quad \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0. \]

For a stationary one-dimensional flow in a tube, canal, etc., with cross-sectional area $ S $, the continuity equation gives the law $\rho S\mathbf v=\text{const}$ for the flow.

How to Cite This Entry:
Continuity equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Continuity_equation&oldid=43570
This article was adapted from an original article by BSE-3 (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article