# Constructible subset

*of an algebraic variety*

A finite union of locally closed (in the Zariski topology) subsets. A locally closed subset is, by definition, an intersection of an open and a closed subset. The constructible subsets form a Boolean algebra and can be defined as elements of the Boolean algebra generated by the algebraic subvarieties. The role of constructible subsets in algebraic geometry is revealed by Chevalley's theorem: If $f:X\rightarrow Y$ is a morphism of algebraic varieties, then $f(X)$ (and, moreover, the image under $f$ of any constructible subset in $X$) is a constructible subset in $Y$. This is related to the fact that "algebraic" conditions determine the constructible subsets of an algebraic variety.

A mapping $h:X\rightarrow T$ is called constructible if $h(X)$ is finite and if for any point $t\in T$ the pre-image $h^{-1}(t)$ is a constructible subset in $X$.

#### References

[1] | A. Grothendieck, J. Dieudonné, "Eléments de géométrie algébrique" , I. Le langage des schémas , Springer (1971) MR0217085 Zbl 0203.23301 |

[2] | A. Borel, "Linear algebraic groups" , Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201 |

**How to Cite This Entry:**

Constructible subset.

*Encyclopedia of Mathematics.*URL: http://encyclopediaofmath.org/index.php?title=Constructible_subset&oldid=55856