Namespaces
Variants
Actions

Conjugate elements

From Encyclopedia of Mathematics
Revision as of 21:08, 29 November 2014 by Richard Pinch (talk | contribs) (MSC 20)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 20-XX [MSN][ZBL] in a group $G$

Elements $x$ and $x'$ of $G$ for which $$ x' = g^{-1} x g $$ for some $g$ in $G$. One also says that $x'$ is the result of conjugating $x$ by $g$. The power notation $x^g$ is frequently used for the conjugate of $x$ under $g$.

Let $A,B$ be two subsets of a group $G$, then $A^B$ denotes the set $$ \{ a^b : a \in A\,,\, b \in B \} $$ For some fixed $g$ in $G$ and some subset $M$ of $G$ the set $M^g = \{ m^g : m \in M\}$ is said to be conjugate to the set $M$ in $G$. In particular, two subgroups $U$ and $V$ are called conjugate subgroups if $V = U^g$ for some $g$ in $G$. If a subgroup $H$ coincides with $H^g$ for every $g \in G$ (that is, $H$ consists of all conjugates of all its elements), then $H$ is called a normal subgroup of $G$ (or an invariant subgroup, or, rarely, a self-conjugate subgroup).


Comments

Conjugacy of elements is an equivalence relation on $G$, and the equivalence classes are the conjugacy classes of $G$.

The map $x \mapsto g^{-1} x g$ for given $g$ is conjugation by $g$: it is an inner automorphism of $G$.


References

[a1] B. Huppert, "Endliche Gruppen" , 1 , Springer (1967)
[a2] D. Gorenstein, "Finite groups" , Chelsea, reprint (1980)
How to Cite This Entry:
Conjugate elements. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conjugate_elements&oldid=35133
This article was adapted from an original article by O.A. Ivanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article