Namespaces
Variants
Actions

Conductor of a character

From Encyclopedia of Mathematics
Revision as of 17:28, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

An integer associated to the character of a representation of the Galois group of a finite extension of a local field. Let be a field that is complete with respect to a discrete valuation, with residue class field of characteristic . Let be a Galois extension of degree with Galois group and suppose that the residue class field extension is separable. If is the character of some finite-dimensional complex representation of , its conductor is defined by the formula:

where

where is the corresponding valuation of . If does not divide , then for and . If is the character of a rational representation , then . The conductor is a non-negative integer.

References

[1] J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1967) pp. Chapt. VI
[2] E. Artin, J. Tate, "Class field theory" , Benjamin (1967)
[3] J.-P. Serre, "Local fields" , Springer (1979) (Translated from French)


Comments

The ideal , where is the conductor of a character of the Galois group of an extension of local fields, is also called the Artin conductor of . There is a corresponding notion for extensions of global fields obtained by taking a suitable product over all finite primes, cf. [a1], p. 126. It plays an important role in the theory of Artin -functions, cf. -function.

References

[a1] J. Neukirch, "Class field theory" , Springer (1986)
How to Cite This Entry:
Conductor of a character. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conductor_of_a_character&oldid=19015
This article was adapted from an original article by I.V. Dolgachev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article