Conductor of a character

From Encyclopedia of Mathematics
Revision as of 17:28, 7 February 2011 by (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

An integer associated to the character of a representation of the Galois group of a finite extension of a local field. Let be a field that is complete with respect to a discrete valuation, with residue class field of characteristic . Let be a Galois extension of degree with Galois group and suppose that the residue class field extension is separable. If is the character of some finite-dimensional complex representation of , its conductor is defined by the formula:


where is the corresponding valuation of . If does not divide , then for and . If is the character of a rational representation , then . The conductor is a non-negative integer.


[1] J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1967) pp. Chapt. VI
[2] E. Artin, J. Tate, "Class field theory" , Benjamin (1967)
[3] J.-P. Serre, "Local fields" , Springer (1979) (Translated from French)


The ideal , where is the conductor of a character of the Galois group of an extension of local fields, is also called the Artin conductor of . There is a corresponding notion for extensions of global fields obtained by taking a suitable product over all finite primes, cf. [a1], p. 126. It plays an important role in the theory of Artin -functions, cf. -function.


[a1] J. Neukirch, "Class field theory" , Springer (1986)
How to Cite This Entry:
Conductor of a character. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by I.V. Dolgachev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article