Namespaces
Variants
Actions

Completion method

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 65F05 [MSN][ZBL]

A method for calculating the inverse of a matrix, based on a recurrent transition which involves the calculation of a matrix $(C+uv)^{-1}$, where $u$ is a column vector, $v$ is a row vector, by the formula $$ (C + uv)^{-1} = C^{-1} - \frac{1}{\gamma} C^{-1} u v C^{-1} \ ,\ \ \ \gamma = 1 + v C^{-1} u \ . $$

The computational scheme of the method is as follows. Let $A = (A_{ij})$ be a given matrix of order $n$. Consider a sequence $A_0 = I, A_1, \ldots, A_n$, where $A_k = A_{k-1} + e_k a_k $ and $e_k$ is the $k$-th column of the identity matrix $I$, $a_k = (a_{k1},\ldots,a_{k,k-1},a_{kk}-1,a_{k,k+1},\ldots,a_{kn})$. Then $A_n = A$ and the matrix $A^{-1}$ is obtained by applying the above-described procedure $n$ times. The computational formulas in this case are the following: If $a_j^{(k)}$ is the $j$-th column of $A_k$, then for $k=1,\ldots,n$, $$ a_j^{(k)} = a_j^{(k-1)} - \frac{ a_ka_j^{(k-1)} }{ 1+a_ka_k^{(k-1)} } a_k^{(k-1)} \ ,\ \ j=1,\ldots,n\,. $$

It is sufficient to compute the elements of the first $k$ rows of the matrix $A_k^{-1}$, since all subsequent rows coincide with the rows of the identity matrix.

Other possibilities of arranging the computations in the completion method based on certain modifications of (*) are known, e.g. the so-called Ershov method (see [1]).

References

[1] D.K. Faddeev, V.N. Faddeeva, "Computational methods of linear algebra" , Freeman (1963) (Translated from Russian)


Comments

This method is also called the bordering method (cf. [1]). See, however, also Bordering method.

How to Cite This Entry:
Completion method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Completion_method&oldid=39782
This article was adapted from an original article by G.D. Kim (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article