Namespaces
Variants
Actions

Completely-integrable differential equation

From Encyclopedia of Mathematics
Revision as of 16:56, 15 April 2012 by Ulf Rehmann (talk | contribs) (MR/ZBL numbers added)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

An equation of the form

(*)

for which an -dimensional integral manifold passes through each point of a certain domain in the space . A necessary and sufficient condition for complete integrability of the differential equation (*) is the Frobenius condition , where is the symbol of the exterior product [1]. If , this condition has the form:

Instead of equation (*) the following system of equations is sometimes considered [2]:

In this case the conditions of complete integrability assume the form:

The family of integral manifolds of a completely-integrable differential equation is a foliation [3].

References

[1] G. Frobenius, "Ueber das Pfaffsche Problem" J. Reine Angew. Math. , 82 (1877) pp. 230–315
[2] V.V. Nemytskii, "On the orbit theory of general dynamic systems" Mat. Sb. , 23 (65) : 2 (1948) pp. 161–186 (In Russian)
[3] S.P. Novikov, "Topology of foliations" Trans. Moscow Math. Soc. , 14 (1965) pp. 268–304 Trudy Moskov. Mat. Obshch. , 14 (1965) pp. 248–278 MR0200938 Zbl 0247.57006


Comments

The exterior product is also called the outer product.

An -dimensional submanifold of is an integral manifold of (*) if the restriction of to is zero; cf. also Pfaffian equation. Another (dual) way to formulate this is as follows. Let be an open subset where . For each let be the set of all (tangent) vectors at such that . Then is an -dimensional subspace and the define a distribution on . An integral manifold of (or of the equation ) is now an -dimensional submanifold of such that for all . A distribution on is called involutive if for all vector fields on such that for all also for all . The Frobenius integrability condition is equivalent in these terms to the condition that the distribution defined by be involutive. All this generalizes to systems of equations , ; cf. Integrable system.

The phase completely-integrable system (completely-integrable Hamiltonian system), completely-integrable Hamiltonian equation on an -dimensional manifold refers to a rather different property, viz. that of having (including the Hamiltonian (function) itself) integrals in involution; cf. Hamiltonian system.

References

[a1] E. Cartan, "Les systèmes différentielles extérieurs et leur applications géométriques" , Hermann (1945)
[a2] S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 1–2 , Interscience (1963–1969) MR1393941 MR1393940 MR0238225 MR1533559 MR0152974 Zbl 0526.53001 Zbl 0508.53002 Zbl 0175.48504 Zbl 0119.37502
How to Cite This Entry:
Completely-integrable differential equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Completely-integrable_differential_equation&oldid=24402
This article was adapted from an original article by L.E. Reizin' (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article