# Difference between revisions of "Completely-continuous operator"

Completely-Continuous Operator

A bounded linear operator , acting from a Banach space into another space , that transforms weakly-convergent sequences in to norm-convergent sequences in . Equivalently, an operator is completely-continuous if it maps every relatively weakly compact subset of into a relatively compact subset of . It is easy to see that every compact operator is completely continuous, however the converse is false. For example, recall that the Banach space X = l1 has the Schur Property, that is weak sequential and norm sequential convergence coincide. It follows that the identity operator from X to X is completely-continuous, but it is not compact since X is infinite-dimensional. If X is reflexive, then every completely-continuous operator is compact, so the two classes of operators do coincide in that case. In the past, the term "completely-continuous operator" was often used to mean compact operator which has sometimes resulted in confusion.

It can be assumed that the space is separable (for this is not a necessary condition; however, the image of a completely-continuous operator is always separable).

The class of compact operators is the most important class of the set of completely-continuous operators (cf. Compact operator).

How to Cite This Entry:
Completely-continuous operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Completely-continuous_operator&oldid=29567
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article