Namespaces
Variants
Actions

Cohomology of groups

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Historically, the earliest theory of a cohomology of algebras.

With every pair $ ( G, A) $, where $ G $ is a group and $ A $ a left $ G $- module (that is, a module over the integral group ring $ \mathbf Z G $), there is associated a sequence of Abelian groups $ H ^ { n } ( G, A) $, called the cohomology groups of $ G $ with coefficients in $ A $. The number $ n $, which runs over the non-negative integers, is called the dimension of $ H ^ { n } ( G, A) $. The cohomology groups of groups are important invariants containing information both on the group $ G $ and on the module $ A $.

By definition, $ H ^ {0} ( G, A) $ is $ \mathop{\rm Hom} _ {G} ( \mathbf Z , A) \simeq A ^ {G} $, where $ A ^ {G} $ is the submodule of $ G $- invariant elements in $ A $. The groups $ H ^ { n } ( G, A) $, $ n > 1 $, are defined as the values of the $ n $- th derived functor of the functor $ A \mapsto H ^ {0} ( G, A) $. Let

$$ \dots \rightarrow ^ { {d _ n} } \ P _ {n} \rightarrow ^ { {d _ {n} - 1 } } \ P _ {n - 1 } \rightarrow \dots \rightarrow \ P _ {0} \rightarrow \mathbf Z \rightarrow 0 $$

be some projective resolution of the trivial $ G $- module $ \mathbf Z $ in the category of $ G $- modules, that is, an exact sequence in which every $ P _ {i} $ is a projective $ \mathbf Z G $- module. Then $ H ^ { n } ( G, A) $ is the $ n $- th cohomology group of the complex

$$ 0 \rightarrow \mathop{\rm Hom} _ {G} ( P _ {0} , A) \rightarrow ^ { {d _ 0} ^ \prime } \ \mathop{\rm Hom} _ {G} ( P _ {1} , A) \rightarrow \dots , $$

where $ d _ {n} ^ { \prime } $ is induced by $ d _ {n} $, that is, $ H ^ { n } ( G, A) = \mathop{\rm Ker} d _ {n} ^ { \prime } / \mathop{\rm Im} d _ {n - 1 } ^ { \prime } $.

The homology groups of a group are defined using the dual construction, in which $ \mathop{\rm Hom} _ {G} $ is replaced everywhere by $ \otimes _ {G} $.

The set of functors $ A \mapsto H ^ { n } ( G, A) $, $ n = 0, 1 \dots $ is a cohomological functor (see Homology functor; Cohomology functor) on the category of left $ G $- modules.

A module of the form $ B = \mathop{\rm Hom} ( \mathbf Z [ G], X) $, where $ X $ is an Abelian group and $ G $ acts on $ B $ according to the formula

$$ ( g \phi ) ( t) = \ \phi ( tg),\ \ \phi \in B,\ \ t \in \mathbf Z G, $$

is said to be co-induced. If $ A $ is injective or co-induced, then $ H ^ { n } ( G, A) = 0 $ for $ n \geq 1 $. Every module $ A $ is isomorphic to a submodule of a co-induced module $ B $. The exact homology sequence for the sequence

$$ 0 \rightarrow A \rightarrow B \rightarrow B/A \rightarrow 0 $$

then defines isomorphisms $ H ^ { n } ( G, B/A) \simeq H ^ { n + 1 } ( G, A) $, $ n \geq 1 $, and an exact sequence

$$ B ^ {G} \rightarrow \ ( B/A) ^ {G} \rightarrow \ H ^ {1} ( G, A) \rightarrow 0. $$

Therefore, the computation of the $ ( n + 1) $- dimensional cohomology group of $ A $ reduces to calculating the $ n $- dimensional cohomology group of $ B/A $. This device is called dimension shifting.

Dimension shifting enables one to give an axiomatic definition of cohomology groups, namely, they can be defined as a sequence of functors $ A \mapsto H ^ { n } ( G, A) $ from the category of $ G $- modules into the category of Abelian groups forming a cohomological functor and satisfying the condition that $ H ^ { n } ( G, B) = 0 $, $ n \geq 1 $, for every co-induced module $ B $.

The groups $ H ^ { n } ( G, A) $ can also be defined as equivalence classes of exact sequences of $ G $- modules of the form

$$ 0 \rightarrow A \rightarrow M _ {1} \rightarrow \dots \rightarrow M _ {n} \rightarrow \mathbf Z \rightarrow 0 $$

with respect to a suitably defined equivalence relation (see [1], Chapt. 3, 4).

To compute the cohomology groups, the standard resolution of the trivial $ G $- module $ \mathbf Z $ is generally used, in which $ P _ {n} = \mathbf Z [ G ^ {n + 1 } ] $ and, for $ ( g _ {0} \dots g _ {n} ) \in G ^ {n + 1 } $,

$$ d _ {n} ( g _ {0} \dots g _ {n} ) = \ \sum _ {i = 0 } ^ { n } (- 1) ^ {i} ( g _ {0} \dots \widehat{g} _ {i} \dots g _ {n} ), $$

where the symbol $ \widehat{ {}} $ over $ g _ {i} $ means that the term $ g _ {i} $ is omitted. The cochains in $ \mathop{\rm Hom} _ {G} ( P _ {n} , A) $ are the functions $ f ( g _ {0} \dots g _ {n} ) $ for which $ gf ( g _ {0} \dots g _ {n} ) = f ( gg _ {0} \dots gg _ {n} ) $. Changing variables according to the rules $ g _ {0} = 1 $, $ g _ {1} = h _ {1} $, $ g _ {2} = h _ {1} h _ {2} \dots g _ {n} = h _ {1} \dots h _ {n} $, one can go over to inhomogeneous cochains $ f ( h _ {1} \dots h _ {n} ) $. The coboundary operation then acts as follows:

$$ d ^ \prime f ( h _ {1} \dots h _ {n + 1 } ) = \ h _ {1} f ( h _ {2} \dots h _ {n + 1 } ) + $$

$$ + \sum _ {i = 1 } ^ { n } (- 1) ^ {i} f ( h _ {1} \dots h _ {i} h _ {i + 1 } \dots h _ {n + 1 } ) + $$

$$ + (- 1) ^ {n + 1 } f ( h _ {1} \dots h _ {n} ). $$

For example, a one-dimensional cocycle is a function $ f: G \rightarrow A $ for which $ f ( g _ {1} g _ {2} ) = g _ {1} f ( g _ {2} ) + f ( g _ {1} ) $ for all $ g _ {1} , g _ {2} \in G $, and a coboundary is a function of the form $ f ( g) = ga - a $ for some $ a \in A $. A one-dimensional cocycle is also said to be a crossed homomorphism and a one-dimensional coboundary a trivial crossed homomorphism. When $ G $ acts trivially on $ A $, crossed homomorphisms are just ordinary homomorphisms and all the trivial crossed homomorphisms are 0, that is, $ H ^ {1} ( G, A) = \mathop{\rm Hom} ( G, A) $ in this case.

The elements of $ H ^ {1} ( G, A) $ can be interpreted as the $ A $- conjugacy classes of sections $ G \rightarrow F $ in the exact sequence $ 1 \rightarrow A \rightarrow F \rightarrow G \rightarrow 1 $, where $ F $ is the semi-direct product of $ G $ and $ A $. The elements of $ H ^ {2} ( G, A) $ can be interpreted as classes of extensions of $ A $ by $ G $. Finally, $ H ^ {3} ( G, A) $ can be interpreted as obstructions to extensions of non-Abelian groups $ H $ with centre $ A $ by $ G $( see [1]). For $ n > 3 $, there are no analogous interpretations known (1978) for the groups $ H ^ { n } ( G, A) $.

If $ H $ is a subgroup of $ G $, then restriction of cocycles from $ G $ to $ H $ defines functorial restriction homomorphisms for all $ n $:

$$ \mathop{\rm res} : \ H ^ { n } ( G, A) \rightarrow \ H ^ { n } ( H, A). $$

For $ n = 0 $, $ \mathop{\rm res} $ is just the imbedding $ A ^ {G} \subset A ^ {H} $. If $ G/H $ is some quotient group of $ G $, then lifting cocycles from $ G/H $ to $ G $ induces the functorial inflation homomorphism

$$ \inf : \ H ^ { n } ( G/H,\ A ^ {H} ) \rightarrow \ H ^ { n } ( G, A). $$

Let $ \phi : G ^ \prime \rightarrow G $ be a homomorphism. Then every $ G $- module $ A $ can be regarded as a $ G ^ \prime $- module by setting $ g ^ \prime a = \phi ( g ^ \prime ) a $ for $ g ^ \prime \in G ^ \prime $. Combining the mappings $ \mathop{\rm res} $ and $ \inf $ gives mappings $ H ^ { n } ( G ^ \prime , A) \rightarrow H ^ { n } ( G, A) $. In this sense $ H ^ {*} ( G, A) $ is a contravariant functor of $ G $. If $ \Pi $ is a group of automorphisms of $ G $, then $ H ^ { n } ( G, A) $ can be given the structure of a $ \Pi $- module. For example, if $ H $ is a normal subgroup of $ G $, the groups $ H ^ { n } ( H, A) $ can be equipped with a natural $ G/H $- module structure. This is possible thanks to the fact that inner automorphisms of $ G $ induce the identity mapping on the $ H ^ { n } ( G, A) $. In particular, for a normal subgroup $ H $ in $ G $, $ \mathop{\rm Im} \mathop{\rm res} \subset H ^ { n } ( H, A) ^ {G/H} $.

Let $ H $ be a subgroup of finite index in the group $ G $. Using the norm map $ N _ {G/H} : A ^ {H} \rightarrow A ^ {G} $, one can use dimension shifting to define the functorial co-restriction mappings for all $ n $:

$$ \mathop{\rm cores} : \ H ^ { n } ( H, A) \rightarrow \ H ^ { n } ( G, A). $$

These satisfy $ \mathop{\rm cores} \cdot \mathop{\rm res} = ( G: H) $.

If $ H $ is a normal subgroup of $ G $ then there exists the Lyndon spectral sequence with second term $ E _ {2} ^ {p,q} = H ^ { p } ( G/H, H ^ { q } ( H, A)) $ converging to the cohomology $ H ^ { n } ( G, A) $( see [1], Chapt. 11). In small dimensions it leads to the exact sequence

$$ 0 \rightarrow H ^ {1} ( G/H, A ^ {H} ) \mathop \rightarrow \limits ^ { \inf } \ H ^ {1} ( G, A) \mathop \rightarrow \limits ^ { { \mathop{\rm res}} } \ H ^ {1} ( H, A) ^ {G/H} \mathop \rightarrow \limits ^ { { \mathop{\rm tr}} } $$

$$ \mathop \rightarrow \limits ^ { { \mathop{\rm tr}} } H ^ {2} ( G/H, A ^ {H} ) \mathop \rightarrow \limits ^ { \inf } H ^ {2} ( G, A), $$

where $ \mathop{\rm tr} $ is the transgression mapping.

For a finite group $ G $, the norm map $ N _ {G} : A \rightarrow A $ induces the mapping $ \widehat{N} _ {G} : H _ {0} ( G, A) \rightarrow H ^ {0} ( G, A) $, where $ H _ {0} ( G, A) = A/J _ {G} A $ and $ J _ {G} $ is the ideal of $ \mathbf Z G $ generated by the elements of the form $ g - 1 $, $ g \in G $. The mapping $ N _ {G} $ can be used to unite the exact cohomology and homology sequences. More exactly, one can define modified cohomology groups (also called Tate cohomology groups) $ \widehat{H} {} ^ {n } ( G, A) $ for all $ n $. Here

$$ \widehat{H} {} ^ {n } ( G, A) = H ^ { n } ( G, A) \ \ \textrm{ for } n \geq 1, $$

$$ \widehat{H} {} ^ {n } ( G, A) = H _ {- n - 1 } ( G, A) \ \textrm{ for } n \leq - 1, $$

$$ \widehat{H} {} ^ {-} 1 ( G, A) = \mathop{\rm Ker} \widehat{N} _ {G} \ \textrm{ and } \ \widehat{H} _ {0} ( G, A) = \mathop{\rm Coker} \widehat{N} _ {G} . $$

For these cohomology groups there exists an exact cohomology sequence that is infinite in both directions. A $ G $- module $ A $ is said to be cohomologically trivial if $ \widehat{H} {} ^ {n } ( H, A) = 0 $ for all $ n $ and all subgroups $ H \subseteq G $. A module $ A $ is cohomologically trivial if and only if there is an $ i $ such that $ \widehat{H} {} ^ {i} ( H, A) = 0 $ and $ \widehat{H} {} ^ {i + 1 } ( H, A) = 0 $ for every subgroup $ H \subseteq G $. Every module $ A $ is a submodule or a quotient module of a cohomologically trivial module, and this allows one to use dimension shifting both to raise and to lower the dimension. In particular, dimension shifting enables one to define $ \mathop{\rm res} $ and $ \mathop{\rm cores} $( but not $ \inf $) for all integral $ n $. For a finitely-generated $ G $- module $ A $ the groups $ \widehat{H} {} ^ {n } ( G, A) $ are finite.

The groups $ \widehat{H} {} ^ {n } ( G, A) $ are annihilated on multiplication by the order of $ G $, and the mapping $ \widehat{H} ( G, A) \rightarrow \oplus _ {p} \widehat{H} {} ^ {n } ( G _ {p} , A) $, induced by restrictions, is a monomorphism, where now $ G _ {p} $ is a Sylow $ p $- subgroup (cf. Sylow subgroup) of $ G $. A number of problems concerning the cohomology of finite groups can be reduced in this way to the consideration of the cohomology of $ p $- groups. The cohomology of cyclic groups has period 2, that is, $ \widehat{H} {} ^ {n } ( G, A) \simeq \widehat{H} {} ^ {n + 2 } ( G, A) $ for all $ n $.

For arbitrary integers $ m $ and $ n $ there is defined a mapping

$$ \widehat{H} {} ^ {n } ( G, A) \otimes \widehat{H} {} ^ {m} ( G, B) \rightarrow \ \widehat{H} {} ^ {n + m } ( G, A \otimes B), $$

(called $ \cup $- product, cup-product), where the tensor product of $ A $ and $ B $ is viewed as a $ G $- module. In the special case where $ A $ is a ring and the operations in $ G $ are automorphisms, the $ \cup $- product turns $ \oplus _ {n} \widehat{H} {} ^ {n } ( G, A) $ into a graded ring. The duality theorem for $ \cup $- products asserts that, for every divisible Abelian group $ C $ and every $ G $- module $ A $, the $ \cup $- product

$$ \widehat{H} {} ^ {n } ( G, A) \otimes \widehat{H} {} ^ {- n - 1 } ( G, \mathop{\rm Hom} ( A, C)) \rightarrow \ \widehat{H} {} ^ {-} 1 ( G, C) $$

defines a group isomorphism between $ \widehat{H} {} ^ {n } ( G, A) $ and $ \mathop{\rm Hom} ( \widehat{H} {} ^ {- n - 1 } ( G, \mathop{\rm Hom} ( A, C)) , \widehat{H} {} ^ {-} 1 ( G, C)) $( see [2]). The $ \cup $- product is also defined for infinite groups $ G $ provided that $ n, m > 0 $.

Many problems lead to the necessity of considering the cohomology of a topological group $ G $ acting continuously on a topological module $ A $. In particular, if $ G $ is a profinite group (the case nearest to that of finite groups) and $ A $ is a discrete Abelian group that is a continuous $ G $- module, one can consider the cohomology groups of $ G $ with coefficients in $ A $, computed in terms of continuous cochains [5]. These groups can also be defined as the limit $ \lim\limits _ \rightarrow H ^ { n } ( G/U, A ^ {U} ) $ with respect to the inflation mapping, where $ U $ runs over all open normal subgroups of $ G $. This cohomology has all the usual properties of the cohomology of finite groups. If $ G $ is a pro- $ p $- group, the dimension over $ \mathbf Z /p \mathbf Z $ of the first and second cohomology groups with coefficients in $ \mathbf Z /p \mathbf Z $ are interpreted as the minimum number of generators and relations (between these generators) of $ G $, respectively.

See [6] for different variants of continuous cohomology, and also for certain other types of cohomology groups. See Non-Abelian cohomology for cohomology with a non-Abelian coefficient group.

References

[1] S. MacLane, "Homology" , Springer (1963) Zbl 0818.18001 Zbl 0328.18009
[2] H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) MR0077480 Zbl 0075.24305
[3] J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1967) MR0215665 Zbl 0153.07403
[4] J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964) MR0180551 Zbl 0128.26303
[5] H. Koch, "Galoissche Theorie der $p$-Erweiterungen" , Deutsch. Verlag Wissenschaft. (1970)
[6] Itogi Nauk. Mat. Algebra. 1964 (1966) pp. 202–235

Comments

The norm map $ N _ {G/H} : A ^ {H} \rightarrow A ^ {G} $ is defined as follows. Let $ g _ {1} \dots g _ {k} $ be a set of representatives of $ G/H $ in $ G $. Then $ N _ {G/H} ( a) = g _ {1} a + \dots + g _ {k} a $ in $ A ^ {G} $. For a definition of the transgression relation in general spectral sequences cf. Spectral sequence; for the particular case of group cohomology, where this gives a relation, sometimes called connection, between $ H ^ { n } ( G, A) $ and $ H ^ { n + 1 } ( G/H, A ^ {H} ) $ for all $ n > 0 $, cf. also [a1], Chapt. 11, Par. 9.

References

[a1] K.S. Brown, "Cohomology of groups" , Springer (1982) MR0672956 Zbl 0584.20036
How to Cite This Entry:
Cohomology of groups. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cohomology_of_groups&oldid=53367
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article