Namespaces
Variants
Actions

Difference between revisions of "Closed category"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX done)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A category with an additional structure, thanks to which the internal Hom-functor can be used as a right-adjoint functor to the abstract tensor product.
+
A [[category]] with an additional structure, thanks to which the internal Hom-functor can be used as a right-adjoint functor to the abstract tensor product.
  
A category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022510/c0225101.png" /> is said to be closed if a bifunctor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022510/c0225102.png" /> (see [[Functor|Functor]]) and a distinguished object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022510/c0225103.png" /> have been given on it, and if it admits natural isomorphisms
+
A category $\mathfrak{M}$ is said to be closed if a [[bifunctor]] $\otimes: \mathfrak{M} \times \mathfrak{M} \rightarrow \mathfrak{M}$ (see [[Functor]]) and a distinguished object $I$ are given on it, and if it admits natural isomorphisms
 +
$$
 +
\alpha_{ABC} : (A \otimes B) \otimes C \rightarrow A \otimes (B \otimes C)\ \ \ \text{associativity,}
 +
$$
 +
$$
 +
\lambda_A : I \otimes A \rightarrow A\ \ \ \text{left identity,}
 +
$$
 +
$$
 +
\rho_A : A \otimes I \rightarrow A\ \ \ \text{right identity,}
 +
$$
 +
$$
 +
\kappa_{AB} : A \otimes B \rightarrow B \otimes A\ \ \ \text{commutativity,}
 +
$$
 +
such that the following conditions are satisfied: 1) the natural isomorphisms $\alpha, \lambda, \rho, \kappa$ are coherent; and 2) every functor
 +
$$
 +
H_{AB}(X) = H_{\mathfrak{M}}(A\otimes X,B) : \mathfrak{M} \rightarrow \mathsf{Set}
 +
$$
 +
where $\mathsf{Set}$ is the category of sets, is [[Representable functor|representable]]. The representing objects are usually denoted by $\mathrm{Hom}_{\mathfrak{M}}(A,B)$, and they can be regarded as the values of the bifunctor $\mathrm{Hom}_{\mathfrak{M}}:\mathfrak{M}^* \times \mathfrak{M} \rightarrow \mathfrak{M}$ (the internal Hom-functor) on objects. If the bifunctor $\otimes$ coincides with a [[Product of a family of objects in a category|product]] and $I$ is a right zero ([[terminal object]]) of $\mathfrak{M}$, then $\mathfrak{M}$ is called a ''[[Cartesian-closed category]]''.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022510/c0225104.png" /></td> </tr></table>
+
The following categories are Cartesian closed: the [[category of sets]], the category of small categories (cf. [[Small category]]) and the category of sheaves of sets over a topological space. The following categories are closed: the [[Modules, category of|category of modules]] over a commutative ring with an identity and the category of real (or complex) Banach spaces and linear mappings with norm not exceeding one.
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022510/c0225105.png" /></td> </tr></table>
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022510/c0225106.png" /></td> </tr></table>
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022510/c0225107.png" /></td> </tr></table>
 
 
 
such that the following conditions are satisfied: 1) the natural isomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022510/c0225108.png" /> are coherent; and 2) every functor
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022510/c0225109.png" /></td> </tr></table>
 
 
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022510/c02251010.png" /> is the category of sets, is representable. The representing objects are usually denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022510/c02251011.png" />, and they can be regarded as the values of the bifunctor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022510/c02251012.png" /> (the internal Hom-functor) on objects. If the bifunctor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022510/c02251013.png" /> coincides with a product and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022510/c02251014.png" /> is a right zero (terminal object) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022510/c02251015.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022510/c02251016.png" /> is called a Cartesian-closed category.
 
 
 
The following categories are Cartesian closed: the category of sets, the category of small categories and the category of sheaves of sets over a topological space. The following categories are closed: the category of modules over a commutative ring with an identity and the category of real (or complex) Banach spaces and linear mappings with norm not exceeding one.
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Bunge,   ''Matematika'' , '''16''' : 2 (1972) pp. 11–46</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> F.W. Lawvere,   "Introduction" F.W. Lawvere (ed.) , ''Toposes, algebraic geometry and logic (Dalhousic Univ., Jan. 1971)'' , ''Lect. notes in math.'' , '''274''' , Springer (1972)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.J. Dubuc,   "Kan extensions in enriched category theory" , Springer (1970)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top"> M. Bunge, ''Matematika'' , '''16''' : 2 (1972) pp. 11–46 {{MR|0360082}} {{ZBL|}} </TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top"> F.W. Lawvere, "Introduction" F.W. Lawvere (ed.) , ''Toposes, algebraic geometry and logic (Dalhousic Univ., Jan. 1971)'' , ''Lect. notes in math.'' , '''274''' , Springer (1972) {{MR|0376798}} {{ZBL|0249.18015}} </TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top"> E.J. Dubuc, "Kan extensions in enriched category theory" , Springer (1970) {{MR|0280560}} {{ZBL|0228.18002}} </TD></TR>
 +
</table>
  
  
Line 28: Line 35:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. MacLane,   "Categories for the working mathematician" , Springer (1971) pp. Chapt. IV, Sect. 6; Chapt. VII, Sect. 7</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top"> S. MacLane, "Categories for the working mathematician" , Springer (1971) pp. Chapt. IV, Sect. 6; Chapt. VII, Sect. 7 {{MR|}} {{ZBL|0232.18001}} </TD></TR>
 +
</table>
 +
 
 +
{{TEX|done}}

Latest revision as of 20:13, 22 December 2017

A category with an additional structure, thanks to which the internal Hom-functor can be used as a right-adjoint functor to the abstract tensor product.

A category $\mathfrak{M}$ is said to be closed if a bifunctor $\otimes: \mathfrak{M} \times \mathfrak{M} \rightarrow \mathfrak{M}$ (see Functor) and a distinguished object $I$ are given on it, and if it admits natural isomorphisms $$ \alpha_{ABC} : (A \otimes B) \otimes C \rightarrow A \otimes (B \otimes C)\ \ \ \text{associativity,} $$ $$ \lambda_A : I \otimes A \rightarrow A\ \ \ \text{left identity,} $$ $$ \rho_A : A \otimes I \rightarrow A\ \ \ \text{right identity,} $$ $$ \kappa_{AB} : A \otimes B \rightarrow B \otimes A\ \ \ \text{commutativity,} $$ such that the following conditions are satisfied: 1) the natural isomorphisms $\alpha, \lambda, \rho, \kappa$ are coherent; and 2) every functor $$ H_{AB}(X) = H_{\mathfrak{M}}(A\otimes X,B) : \mathfrak{M} \rightarrow \mathsf{Set} $$ where $\mathsf{Set}$ is the category of sets, is representable. The representing objects are usually denoted by $\mathrm{Hom}_{\mathfrak{M}}(A,B)$, and they can be regarded as the values of the bifunctor $\mathrm{Hom}_{\mathfrak{M}}:\mathfrak{M}^* \times \mathfrak{M} \rightarrow \mathfrak{M}$ (the internal Hom-functor) on objects. If the bifunctor $\otimes$ coincides with a product and $I$ is a right zero (terminal object) of $\mathfrak{M}$, then $\mathfrak{M}$ is called a Cartesian-closed category.

The following categories are Cartesian closed: the category of sets, the category of small categories (cf. Small category) and the category of sheaves of sets over a topological space. The following categories are closed: the category of modules over a commutative ring with an identity and the category of real (or complex) Banach spaces and linear mappings with norm not exceeding one.

References

[1] M. Bunge, Matematika , 16 : 2 (1972) pp. 11–46 MR0360082
[2] F.W. Lawvere, "Introduction" F.W. Lawvere (ed.) , Toposes, algebraic geometry and logic (Dalhousic Univ., Jan. 1971) , Lect. notes in math. , 274 , Springer (1972) MR0376798 Zbl 0249.18015
[3] E.J. Dubuc, "Kan extensions in enriched category theory" , Springer (1970) MR0280560 Zbl 0228.18002


Comments

References

[a1] S. MacLane, "Categories for the working mathematician" , Springer (1971) pp. Chapt. IV, Sect. 6; Chapt. VII, Sect. 7 Zbl 0232.18001
How to Cite This Entry:
Closed category. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Closed_category&oldid=16972
This article was adapted from an original article by M.Sh. Tsalenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article