Namespaces
Variants
Actions

Difference between revisions of "Christoffel-Schwarz formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
c0222101.png
 +
$#A+1 = 26 n = 0
 +
$#C+1 = 26 : ~/encyclopedia/old_files/data/C022/C.0202210 Christoffel\ANDSchwarz formula
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
The formula
 
The formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c0222101.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
f ( z)  = c _ {1} + c
 +
\int\limits _ {z _ {0} } ^ { z }  \
 +
\prod _ {k = 1 } ^ { n }
 +
( t - a _ {k} ) ^ {\alpha _ {k} - 1 }
 +
dt ,
 +
$$
  
constituting an integral representation for a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c0222102.png" /> which defines a conformal mapping of the upper half-plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c0222103.png" /> onto the interior of a bounded polygon with vertices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c0222104.png" /> and vertex angles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c0222105.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c0222106.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c0222107.png" />). Moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c0222108.png" /> are certain constants, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c0222109.png" />. The constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c02221010.png" /> can be fixed arbitrarily in the upper half-plane. A triple of points in the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c02221011.png" />, say <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c02221012.png" />, can be prescribed arbitrarily; the remaining <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c02221013.png" /> points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c02221014.png" /> and the constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c02221015.png" /> are uniquely determined if the vertices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c02221016.png" /> of the polygon are prescribed (see [[#References|[3]]]). Formula (*) was established independently by E.B. Christoffel (1867, see ) and H.A. Schwarz (1869, see [[#References|[2]]]). The integral on the right-hand side of (*) is known as a Christoffel–Schwarz integral.
+
constituting an integral representation for a function $  f ( z) $
 +
which defines a conformal mapping of the upper half-plane $  \mathop{\rm Im}  z > 0 $
 +
onto the interior of a bounded polygon with vertices $  A _ {k} $
 +
and vertex angles $  \pi \alpha _ {k} $(
 +
0 < \alpha _ {k} \leq  2 $,  
 +
$  k = 1 \dots n $).  
 +
Moreover, $  z _ {0} , c , c _ {1} $
 +
are certain constants, and $  A _ {k} = f ( a _ {k} ) $.  
 +
The constant $  z _ {0} $
 +
can be fixed arbitrarily in the upper half-plane. A triple of points in the sequence $  a _ {1} \dots a _ {n} $,  
 +
say $  a _ {1} , a _ {2} , a _ {3} $,  
 +
can be prescribed arbitrarily; the remaining $  n - 3 $
 +
points $  a _ {k} $
 +
and the constants $  c, c _ {1} $
 +
are uniquely determined if the vertices $  A _ {1} \dots A _ {n} $
 +
of the polygon are prescribed (see [[#References|[3]]]). Formula (*) was established independently by E.B. Christoffel (1867, see ) and H.A. Schwarz (1869, see [[#References|[2]]]). The integral on the right-hand side of (*) is known as a Christoffel–Schwarz integral.
  
The basic difficulty in using formula (*) is to find the unknown parameters. No general methods are known for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c02221017.png" />.
+
The basic difficulty in using formula (*) is to find the unknown parameters. No general methods are known for $  n > 4 $.
  
 
Methods have been worked out for approximating the parameters of the Christoffel–Schwarz formula (see [[#References|[4]]], [[#References|[5]]]).
 
Methods have been worked out for approximating the parameters of the Christoffel–Schwarz formula (see [[#References|[4]]], [[#References|[5]]]).
  
The Christoffel–Schwarz formula remains valid for polygons with one or more vertices at infinity. In that case the angle between the sides at infinity is, by definition, the angle (with minus sign) between the relevant sides (or their continuations) at a finite point. If the pre-image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c02221018.png" /> of one of the vertices is the point at infinity, the corresponding factor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c02221019.png" /> is dropped in formula (*).
+
The Christoffel–Schwarz formula remains valid for polygons with one or more vertices at infinity. In that case the angle between the sides at infinity is, by definition, the angle (with minus sign) between the relevant sides (or their continuations) at a finite point. If the pre-image $  a _ {i} $
 +
of one of the vertices is the point at infinity, the corresponding factor $  ( t - a _ {i} ) ^ {\alpha _ {i} - 1 } $
 +
is dropped in formula (*).
  
The Christoffel–Schwarz formula is also valid for a function that maps the unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c02221020.png" /> onto the above polygon. In that case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c02221021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c02221022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c02221023.png" />. Modifications of the formula are valid for functions mapping the upper half-plane — or the interior and exterior of the unit disc — onto the exterior of a polygon (see [[#References|[3]]]).
+
The Christoffel–Schwarz formula is also valid for a function that maps the unit disc $  | z | < 1 $
 +
onto the above polygon. In that case $  | a _ {k} | = 1 $,  
 +
$  k = 1 \dots n $,  
 +
$  | z _ {0} | \leq  1 $.  
 +
Modifications of the formula are valid for functions mapping the upper half-plane — or the interior and exterior of the unit disc — onto the exterior of a polygon (see [[#References|[3]]]).
  
The Christoffel–Schwarz formula may be generalized to the case in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c02221024.png" /> defines a conformal mapping of a circular annulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c02221025.png" />, or, in general, a multiply-connected domain defined by deleting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022210/c02221026.png" /> discs from the interior of a disc, onto a domain (multiply-connected of the same degree) bounded by polygons (see [[#References|[6]]], [[#References|[7]]]).
+
The Christoffel–Schwarz formula may be generalized to the case in which $  f ( z) $
 +
defines a conformal mapping of a circular annulus $  0 < q < | z | < 1 $,  
 +
or, in general, a multiply-connected domain defined by deleting $  n $
 +
discs from the interior of a disc, onto a domain (multiply-connected of the same degree) bounded by polygons (see [[#References|[6]]], [[#References|[7]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  E.B. Christoffel,  ''Ann. di Math. Pura Appl. (2)'' , '''1'''  (1868)  pp. 89–103</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  E.B. Christoffel,  ''Ann. di Math. Pura Appl. (2)'' , '''4'''  (1871)  pp. 1–9</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H.A. Schwarz,  "Gesamm. math. Abhandl." , '''1–2''' , Springer  (1890)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M.A. Lavrent'ev,  B.V. Shabat,  "Methoden der komplexen Funktionentheorie" , Deutsch. Verlag Wissenschaft.  (1967)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  L.V. Kantorovich,  V.I. Krylov,  "Approximate methods of higher analysis" , Noordhoff  (1958)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  W. Koppenfels,  F. Stalman,  "Praxis der konformen Abbildung" , Springer  (1959)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  N.I. Akhiezer,  "Elements of the theory of elliptic functions" , Amer. Math. Soc.  (1990)  (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  Yu.D. Maksimov,  "Extension of the structural formula for convex univalent functions to a multiply connected circular region"  ''Soviet Math. Dokl.'' , '''2'''  pp. 55–58  ''Dokl. Akad. Nauk SSSR'' , '''136''' :  2  (1961)  pp. 284–287</TD></TR></table>
 
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  E.B. Christoffel,  ''Ann. di Math. Pura Appl. (2)'' , '''1'''  (1868)  pp. 89–103</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  E.B. Christoffel,  ''Ann. di Math. Pura Appl. (2)'' , '''4'''  (1871)  pp. 1–9</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H.A. Schwarz,  "Gesamm. math. Abhandl." , '''1–2''' , Springer  (1890)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M.A. Lavrent'ev,  B.V. Shabat,  "Methoden der komplexen Funktionentheorie" , Deutsch. Verlag Wissenschaft.  (1967)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  L.V. Kantorovich,  V.I. Krylov,  "Approximate methods of higher analysis" , Noordhoff  (1958)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  W. Koppenfels,  F. Stalman,  "Praxis der konformen Abbildung" , Springer  (1959)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  N.I. Akhiezer,  "Elements of the theory of elliptic functions" , Amer. Math. Soc.  (1990)  (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  Yu.D. Maksimov,  "Extension of the structural formula for convex univalent functions to a multiply connected circular region"  ''Soviet Math. Dokl.'' , '''2'''  pp. 55–58  ''Dokl. Akad. Nauk SSSR'' , '''136''' :  2  (1961)  pp. 284–287</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 16:44, 4 June 2020


The formula

$$ \tag{* } f ( z) = c _ {1} + c \int\limits _ {z _ {0} } ^ { z } \ \prod _ {k = 1 } ^ { n } ( t - a _ {k} ) ^ {\alpha _ {k} - 1 } dt , $$

constituting an integral representation for a function $ f ( z) $ which defines a conformal mapping of the upper half-plane $ \mathop{\rm Im} z > 0 $ onto the interior of a bounded polygon with vertices $ A _ {k} $ and vertex angles $ \pi \alpha _ {k} $( $ 0 < \alpha _ {k} \leq 2 $, $ k = 1 \dots n $). Moreover, $ z _ {0} , c , c _ {1} $ are certain constants, and $ A _ {k} = f ( a _ {k} ) $. The constant $ z _ {0} $ can be fixed arbitrarily in the upper half-plane. A triple of points in the sequence $ a _ {1} \dots a _ {n} $, say $ a _ {1} , a _ {2} , a _ {3} $, can be prescribed arbitrarily; the remaining $ n - 3 $ points $ a _ {k} $ and the constants $ c, c _ {1} $ are uniquely determined if the vertices $ A _ {1} \dots A _ {n} $ of the polygon are prescribed (see [3]). Formula (*) was established independently by E.B. Christoffel (1867, see ) and H.A. Schwarz (1869, see [2]). The integral on the right-hand side of (*) is known as a Christoffel–Schwarz integral.

The basic difficulty in using formula (*) is to find the unknown parameters. No general methods are known for $ n > 4 $.

Methods have been worked out for approximating the parameters of the Christoffel–Schwarz formula (see [4], [5]).

The Christoffel–Schwarz formula remains valid for polygons with one or more vertices at infinity. In that case the angle between the sides at infinity is, by definition, the angle (with minus sign) between the relevant sides (or their continuations) at a finite point. If the pre-image $ a _ {i} $ of one of the vertices is the point at infinity, the corresponding factor $ ( t - a _ {i} ) ^ {\alpha _ {i} - 1 } $ is dropped in formula (*).

The Christoffel–Schwarz formula is also valid for a function that maps the unit disc $ | z | < 1 $ onto the above polygon. In that case $ | a _ {k} | = 1 $, $ k = 1 \dots n $, $ | z _ {0} | \leq 1 $. Modifications of the formula are valid for functions mapping the upper half-plane — or the interior and exterior of the unit disc — onto the exterior of a polygon (see [3]).

The Christoffel–Schwarz formula may be generalized to the case in which $ f ( z) $ defines a conformal mapping of a circular annulus $ 0 < q < | z | < 1 $, or, in general, a multiply-connected domain defined by deleting $ n $ discs from the interior of a disc, onto a domain (multiply-connected of the same degree) bounded by polygons (see [6], [7]).

References

[1a] E.B. Christoffel, Ann. di Math. Pura Appl. (2) , 1 (1868) pp. 89–103
[1b] E.B. Christoffel, Ann. di Math. Pura Appl. (2) , 4 (1871) pp. 1–9
[2] H.A. Schwarz, "Gesamm. math. Abhandl." , 1–2 , Springer (1890)
[3] M.A. Lavrent'ev, B.V. Shabat, "Methoden der komplexen Funktionentheorie" , Deutsch. Verlag Wissenschaft. (1967) (Translated from Russian)
[4] L.V. Kantorovich, V.I. Krylov, "Approximate methods of higher analysis" , Noordhoff (1958) (Translated from Russian)
[5] W. Koppenfels, F. Stalman, "Praxis der konformen Abbildung" , Springer (1959)
[6] N.I. Akhiezer, "Elements of the theory of elliptic functions" , Amer. Math. Soc. (1990) (Translated from Russian)
[7] Yu.D. Maksimov, "Extension of the structural formula for convex univalent functions to a multiply connected circular region" Soviet Math. Dokl. , 2 pp. 55–58 Dokl. Akad. Nauk SSSR , 136 : 2 (1961) pp. 284–287

Comments

The above formula is also called the Schwarz–Christoffel formula (cf. [a1]).

References

[a1] L.V. Ahlfors, "Complex analysis" , McGraw-Hill (1979) pp. Chapt. 6, Sect. 2
[a2] E. Hille, "Analytic function theory" , 2 , Chelsea, reprint (1977)
[a3] Z. Nehari, "Conformal mapping" , Dover, reprint (1975) pp. 2
How to Cite This Entry:
Christoffel-Schwarz formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Christoffel-Schwarz_formula&oldid=22293
This article was adapted from an original article by Yu.D. Maksimov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article