# Chebyshev theorems on prime numbers

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The theorems 1)–8) on the distribution of prime numbers, proved by P.L. Chebyshev [1] in 1848–1850.

Let $\pi(x)$ be the number of primes not exceeding $x$, let $m$ be an integer $\geq0$, let $p$ be a prime number, let $\ln u$ be the natural logarithm of $u$, and let

$$\operatorname{li}x=\int\limits_2^x\frac{dt}{\ln x}=\label{*}\tag{*}$$

$$=\frac x{\ln x}+\dots+\frac{(n-1)!x}{\ln^nx}+O\left(\frac x{\ln^{n+1}x}\right).$$

1) For any $m$ the sum of the series

$$\sum_{n=2}^\infty\left(\pi(n)-\pi(n-1)-\frac1{\ln n}\right)\frac{\ln^mn}{n^s}$$

has a finite limit as $s\to1+$.

2) For arbitrary small $a>0$ and arbitrary large $m$, the function $\pi(x)$ satisfies the two inequalities

$$\pi(x)>\operatorname{li}x-ax\ln^{-m}x,\quad\pi(x)<\operatorname{li}x+ax\ln^{-m}x$$

infinitely often.

3) The fraction $(\pi(x)\ln x)/x$ cannot have a limit distinct from 1 as $x\to\infty$.

4) If $\pi(x)$ can be expressed algebraically in $x$, $\ln x$ and $e^x$ up to order $x\ln^{-n}x$, then the expression must be \eqref{*}. After this, Chebyshev introduced two new distribution functions for prime numbers — the Chebyshev functions (cf. Chebyshev function)

$$\theta(x)=\sum_{p\leq x}\ln p,\quad\psi(x)=\sum_{p^m\leq x}\ln p,$$

and actually determined the order of growth of these functions. Hence he was the first to obtain the order of growth of $\pi(x)$ and of the $n$-th prime number $P_n$. More precisely, he proved:

5) If $A=\ln(2^{1/2}3^{1/3}5^{1/5}/30^{1/30})$, then for $x>1$ the inequalities

$$\psi(x)>Ax-\frac52\ln x-1,$$

$$\psi(x)<\frac65Ax+\frac5{4\ln6}\ln^2x+\frac54\ln x+1,$$

hold.

6) For $x$ larger than some $x_0$ the inequality

$$0.9212\ldots<\frac{\pi(x)\ln x}{x}<1.1055\dots$$

holds.

7) There exist constants $a>0,A>0$ such that for all $n=1,2,\dots,$ the $n$-th prime number $P_n$ satisfies the inequalities

$$an\ln n<P_n<An\ln n.$$

8) For $a>3$ there is at least one prime number in the interval $(a,2a-2)$ (Bertrand's postulate).

The main idea of the method of proof of 1)–4) lies in the study of the behaviour of the quantities

$$\sum_{n=2}^\infty\frac1{n^{1+s}}-\frac1s,\quad\ln s-\sum\ln\left(1-\frac1{p^{1+s}}\right),$$

$$\sum_p\ln\left(1-\frac1{p^{1+s}}\right)+\sum_p\frac1{p^{1+s}},$$

and their derivatives as $s\to0+$. The basis of the method of deducing 5)–8) is the Chebyshev identity:

$$\ln[x]!=\sum_{n\leq x}\psi\left(\frac xn\right).$$

#### References

 [1] P.L. Chebyshev, "Oeuvres de P.L. Tchebycheff" , 1–2 , Chelsea (1961) (Translated from Russian)

$$\pi(x)=\operatorname{li}(x)+O(x\exp(-c\sqrt{\log x}))$$
(see [a1] for even better results); further $\pi(x)-\operatorname{li}(x)$ changes sign infinitely often. More results, as well as references, can be found in [a1], Chapt. 12, Notes.