Namespaces
Variants
Actions

Chebyshev inequality

From Encyclopedia of Mathematics
Revision as of 12:59, 14 February 2020 by Ivan (talk | contribs) (dots)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

for finite monotone sequences

$$a_1\leq\dotsb\leq a_n,\quad b_1\leq\dotsb\leq b_n$$

The inequality

$$\sum_{k=1}^na_k\sum_{k=1}^nb_k\leq n\sum_{k=1}^na_kb_k.$$

Chebyshev's inequality for monotone functions $f,g\geq0$ is the inequality

$$\int\limits_a^bf(x)dx\int\limits_a^bg(x)dx\leq(b-a)\int\limits_a^bf(x)g(x)dx,$$

where $f$ and $g$ are either both increasing or both decreasing on $[a,b]$.

The inequalities were established by P.L. Chebyshev in 1882.


Comments

It is not important that $f$ and $g$ be non-negative. The proof consists of simply integrating the non-negative function $\tau(x,y)=[f(x)-f(y)][g(x)-g(y)]$ over the square $[a,b]\times[a,b]$.

How to Cite This Entry:
Chebyshev inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Chebyshev_inequality&oldid=44607
This article was adapted from an original article by V.I. Bityutskov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article