Namespaces
Variants
Actions

Difference between revisions of "Character of a representation of a group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (→‎References: latexify)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
In the case of a finite-dimensional representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c0215701.png" /> this is the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c0215702.png" /> on the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c0215703.png" /> defined by the formula
+
<!--
 +
c0215701.png
 +
$#A+1 = 62 n = 1
 +
$#C+1 = 62 : ~/encyclopedia/old_files/data/C021/C.0201570 Character of a representation of a group
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c0215704.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
For arbitrary continuous representations of a topological group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c0215705.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c0215706.png" /> this definition is generalized as follows:
+
In the case of a finite-dimensional representation  $  \pi $
 +
this is the function  $  \chi _  \pi  $
 +
on the group  $  G $
 +
defined by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c0215707.png" /></td> </tr></table>
+
$$
 +
\chi _  \pi  ( g)  = \
 +
\mathop{\rm tr}  \pi ( g),\ \
 +
g \in G.
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c0215708.png" /> is a linear functional defined on some ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c0215709.png" /> of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157010.png" /> generated by the family of operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157012.png" />, that is invariant under inner automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157013.png" />. In certain cases the character of a representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157014.png" /> is defined as that of the representation of a certain [[Group algebra|group algebra]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157015.png" /> determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157016.png" /> (see [[Character of a representation of an associative algebra|Character of a representation of an associative algebra]]).
+
For arbitrary continuous representations of a topological group  $  G $
 +
over  $  \mathbf C $
 +
this definition is generalized as follows:
 +
 
 +
$$
 +
\chi _  \pi  ( g)  = \
 +
\chi ( \pi ( g)) \ \
 +
\textrm{ for } \
 +
g \in G,
 +
$$
 +
 
 +
where $  \chi $
 +
is a linear functional defined on some ideal $  I $
 +
of the algebra $  A $
 +
generated by the family of operators $  \pi ( g) $,  
 +
$  g \in G $,  
 +
that is invariant under inner automorphisms of $  A $.  
 +
In certain cases the character of a representation $  \pi $
 +
is defined as that of the representation of a certain [[Group algebra|group algebra]] of $  G $
 +
determined by $  \pi $ (see [[Character of a representation of an associative algebra|Character of a representation of an associative algebra]]).
  
 
The character of a direct sum (of a tensor product) of finite-dimensional representations is equal to the sum (the product) of the characters of these representations. The character of a finite-dimensional representation of a group is a function that is constant on classes of conjugate elements; the character of a continuous finite-dimensional unitary representation of a group is a continuous positive-definite function on the group.
 
The character of a direct sum (of a tensor product) of finite-dimensional representations is equal to the sum (the product) of the characters of these representations. The character of a finite-dimensional representation of a group is a function that is constant on classes of conjugate elements; the character of a continuous finite-dimensional unitary representation of a group is a continuous positive-definite function on the group.
Line 13: Line 47:
 
In many cases the character of a representation of a group determines the representation uniquely up to equivalence; for example, the character of an irreducible finite-dimensional representation over a field of characteristic 0 determines the representation uniquely up to spatial equivalence; the character of a finite-dimensional continuous unitary representation of a compact group is determining up to unitary equivalence.
 
In many cases the character of a representation of a group determines the representation uniquely up to equivalence; for example, the character of an irreducible finite-dimensional representation over a field of characteristic 0 determines the representation uniquely up to spatial equivalence; the character of a finite-dimensional continuous unitary representation of a compact group is determining up to unitary equivalence.
  
The character of a representation of a locally compact group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157017.png" /> admitting an extension to a representation of the algebra of continuous functions of compact support on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157018.png" /> can be defined by a measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157019.png" />; in particular, the character of the regular representation of a unimodular group is given by a probability point measure concentrated at the unit element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157020.png" />. The character of a representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157021.png" /> of a Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157022.png" /> admitting an extension to a representation of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157023.png" /> of infinitely-differentiable functions of compact support on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157024.png" /> can be defined as a generalized function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157025.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157026.png" /> is a nilpotent or a linear semi-simple Lie group, then the characters of irreducible unitary representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157027.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157028.png" /> are defined by locally integrable functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157029.png" /> according to the formula
+
The character of a representation of a locally compact group $  G $
 +
admitting an extension to a representation of the algebra of continuous functions of compact support on $  G $
 +
can be defined by a measure on $  G $;  
 +
in particular, the character of the regular representation of a unimodular group is given by a probability point measure concentrated at the unit element of $  G $.  
 +
The character of a representation $  \pi $
 +
of a Lie group $  G $
 +
admitting an extension to a representation of the algebra $  C _ {0}  ^  \infty  ( G) $
 +
of infinitely-differentiable functions of compact support on $  G $
 +
can be defined as a generalized function on $  G $.  
 +
If $  G $
 +
is a nilpotent or a linear semi-simple Lie group, then the characters of irreducible unitary representations $  \pi $
 +
of $  G $
 +
are defined by locally integrable functions $  \psi _  \pi  $
 +
according to the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157030.png" /></td> </tr></table>
+
$$
 +
\chi _  \pi  ( f  )  = \
 +
\int\limits _ { G } f ( g)
 +
\psi _  \pi  ( g)  dg,\ \
 +
f \in C _ {0}  ^  \infty  ( G).
 +
$$
  
These characters determine the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157031.png" /> uniquely up to unitary equivalence.
+
These characters determine the representation $  \pi $
 +
uniquely up to unitary equivalence.
  
If the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157032.png" /> is compact, every continuous positive-definite function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157033.png" /> that is constant on classes of conjugate elements can be expanded into a series with respect to the characters of the irreducible representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157034.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157035.png" />. The series converges uniformly on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157036.png" /> and the characters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157037.png" /> form an orthonormal system in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157038.png" /> that is complete in the subspace of functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157039.png" /> that are constant on classes of conjugate elements in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157040.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157041.png" /> is the expansion of the character of a continuous finite-dimensional representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157042.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157043.png" /> with respect to the characters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157044.png" />, then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157045.png" /> are integers, namely, the multiplicities with which the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157046.png" /> occur in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157047.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157048.png" /> is a continuous representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157049.png" /> in a quasi-complete, barrelled, locally convex topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157050.png" />, then there exists a maximal subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157051.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157052.png" /> such that the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157053.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157054.png" /> is a multiple of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157055.png" />, and there is a continuous projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157056.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157057.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157058.png" />, defined by
+
If the group $  G $
 +
is compact, every continuous positive-definite function on $  G $
 +
that is constant on classes of conjugate elements can be expanded into a series with respect to the characters of the irreducible representations $  \pi _  \alpha  $
 +
of $  G $.  
 +
The series converges uniformly on $  G $
 +
and the characters $  \chi _ {\pi _  \alpha  } $
 +
form an orthonormal system in the space $  L _ {2} ( G) $
 +
that is complete in the subspace of functions in $  L _ {2} ( G) $
 +
that are constant on classes of conjugate elements in $  G $.  
 +
If $  \chi _  \rho  = \sum _  \alpha  m _  \alpha  \chi _ {\pi _  \alpha  } $
 +
is the expansion of the character of a continuous finite-dimensional representation $  \rho $
 +
of the group $  G $
 +
with respect to the characters $  \chi _ {\pi _  \alpha  } $,  
 +
then the $  m _  \alpha  $
 +
are integers, namely, the multiplicities with which the $  \pi _  \alpha  $
 +
occur in $  \rho $.  
 +
If $  \rho $
 +
is a continuous representation of $  G $
 +
in a quasi-complete, barrelled, locally convex topological space $  E $,  
 +
then there exists a maximal subspace $  E _  \alpha  $
 +
of $  E $
 +
such that the restriction of $  \rho $
 +
to $  E _  \alpha  $
 +
is a multiple of $  \pi _  \alpha  $,  
 +
and there is a continuous projection $  P _  \alpha  $
 +
of $  E $
 +
onto $  E _  \alpha  $,  
 +
defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157059.png" /></td> </tr></table>
+
$$
 +
P _  \alpha  = \
 +
\chi _ {\pi _  \alpha  } ( e)
 +
\int\limits _ { G }
 +
{\chi _ {\pi _  \alpha  } ( g) } bar
 +
\rho ( g)  dg,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157060.png" /> is the Haar measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157061.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157062.png" />.
+
where $  dg $
 +
is the Haar measure on $  G $
 +
for which $  \int _ {G}  dg = 1 $.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Kirillov,  "Elements of the theory of representations" , Springer  (1976)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C.W. Curtis,  I. Reiner,  "Representation theory of finite groups and associative algebras" , Interscience  (1962)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J. Dixmier,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157063.png" /> algebras" , North-Holland  (1977)  (Translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  G.F. Frobenius,  J.-P. Serre (ed.) , ''Gesammelte Abhandlungen'' , Springer  (1968)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  M.A. Naimark,  "Theory of group representations" , Springer  (1982)  (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  D.E. Littlewood,  "The theory of group characters and matrix representations of groups" , Clarendon Press  (1950)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Kirillov,  "Elements of the theory of representations" , Springer  (1976)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C.W. Curtis,  I. Reiner,  "Representation theory of finite groups and associative algebras" , Interscience  (1962)</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  J. Dixmier,  "$C^\star$ algebras" , North-Holland  (1977)  (Translated from French)</TD></TR>
 +
<TR><TD valign="top">[4]</TD> <TD valign="top">  G.F. Frobenius,  J.-P. Serre (ed.) , ''Gesammelte Abhandlungen'' , Springer  (1968)</TD></TR>
 +
<TR><TD valign="top">[5]</TD> <TD valign="top">  M.A. Naimark,  "Theory of group representations" , Springer  (1982)  (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  D.E. Littlewood,  "The theory of group characters and matrix representations of groups" , Clarendon Press  (1950)</TD></TR></table>

Latest revision as of 09:30, 26 March 2023


In the case of a finite-dimensional representation $ \pi $ this is the function $ \chi _ \pi $ on the group $ G $ defined by the formula

$$ \chi _ \pi ( g) = \ \mathop{\rm tr} \pi ( g),\ \ g \in G. $$

For arbitrary continuous representations of a topological group $ G $ over $ \mathbf C $ this definition is generalized as follows:

$$ \chi _ \pi ( g) = \ \chi ( \pi ( g)) \ \ \textrm{ for } \ g \in G, $$

where $ \chi $ is a linear functional defined on some ideal $ I $ of the algebra $ A $ generated by the family of operators $ \pi ( g) $, $ g \in G $, that is invariant under inner automorphisms of $ A $. In certain cases the character of a representation $ \pi $ is defined as that of the representation of a certain group algebra of $ G $ determined by $ \pi $ (see Character of a representation of an associative algebra).

The character of a direct sum (of a tensor product) of finite-dimensional representations is equal to the sum (the product) of the characters of these representations. The character of a finite-dimensional representation of a group is a function that is constant on classes of conjugate elements; the character of a continuous finite-dimensional unitary representation of a group is a continuous positive-definite function on the group.

In many cases the character of a representation of a group determines the representation uniquely up to equivalence; for example, the character of an irreducible finite-dimensional representation over a field of characteristic 0 determines the representation uniquely up to spatial equivalence; the character of a finite-dimensional continuous unitary representation of a compact group is determining up to unitary equivalence.

The character of a representation of a locally compact group $ G $ admitting an extension to a representation of the algebra of continuous functions of compact support on $ G $ can be defined by a measure on $ G $; in particular, the character of the regular representation of a unimodular group is given by a probability point measure concentrated at the unit element of $ G $. The character of a representation $ \pi $ of a Lie group $ G $ admitting an extension to a representation of the algebra $ C _ {0} ^ \infty ( G) $ of infinitely-differentiable functions of compact support on $ G $ can be defined as a generalized function on $ G $. If $ G $ is a nilpotent or a linear semi-simple Lie group, then the characters of irreducible unitary representations $ \pi $ of $ G $ are defined by locally integrable functions $ \psi _ \pi $ according to the formula

$$ \chi _ \pi ( f ) = \ \int\limits _ { G } f ( g) \psi _ \pi ( g) dg,\ \ f \in C _ {0} ^ \infty ( G). $$

These characters determine the representation $ \pi $ uniquely up to unitary equivalence.

If the group $ G $ is compact, every continuous positive-definite function on $ G $ that is constant on classes of conjugate elements can be expanded into a series with respect to the characters of the irreducible representations $ \pi _ \alpha $ of $ G $. The series converges uniformly on $ G $ and the characters $ \chi _ {\pi _ \alpha } $ form an orthonormal system in the space $ L _ {2} ( G) $ that is complete in the subspace of functions in $ L _ {2} ( G) $ that are constant on classes of conjugate elements in $ G $. If $ \chi _ \rho = \sum _ \alpha m _ \alpha \chi _ {\pi _ \alpha } $ is the expansion of the character of a continuous finite-dimensional representation $ \rho $ of the group $ G $ with respect to the characters $ \chi _ {\pi _ \alpha } $, then the $ m _ \alpha $ are integers, namely, the multiplicities with which the $ \pi _ \alpha $ occur in $ \rho $. If $ \rho $ is a continuous representation of $ G $ in a quasi-complete, barrelled, locally convex topological space $ E $, then there exists a maximal subspace $ E _ \alpha $ of $ E $ such that the restriction of $ \rho $ to $ E _ \alpha $ is a multiple of $ \pi _ \alpha $, and there is a continuous projection $ P _ \alpha $ of $ E $ onto $ E _ \alpha $, defined by

$$ P _ \alpha = \ \chi _ {\pi _ \alpha } ( e) \int\limits _ { G } {\chi _ {\pi _ \alpha } ( g) } bar \rho ( g) dg, $$

where $ dg $ is the Haar measure on $ G $ for which $ \int _ {G} dg = 1 $.

References

[1] A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) (Translated from Russian)
[2] C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962)
[3] J. Dixmier, "$C^\star$ algebras" , North-Holland (1977) (Translated from French)
[4] G.F. Frobenius, J.-P. Serre (ed.) , Gesammelte Abhandlungen , Springer (1968)
[5] M.A. Naimark, "Theory of group representations" , Springer (1982) (Translated from Russian)
[6] D.E. Littlewood, "The theory of group characters and matrix representations of groups" , Clarendon Press (1950)
How to Cite This Entry:
Character of a representation of a group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Character_of_a_representation_of_a_group&oldid=15563
This article was adapted from an original article by A.I. Shtern (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article