Namespaces
Variants
Actions

Carathéodory measure

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 28A [MSN][ZBL]

The term might refer to different objects in classical measure theory.

Caratheodory measures and outer measures in metric spaces

Consider an outer measure $\mu$ defined on the class $\mathcal{P} (X)$ of subsets of a metric space $(X,d)$. $\mu$ is a Caratheodory outer measure, more often called metric outer measure (cp. with Section 11 of [Ha]), if \begin{equation}\label{e:additive} \mu (A\cup B) = \mu (A) + \mu (B) \end{equation} for every pair of sets $A, B\subset X$ which have positive distance (i.e. such that $\inf \{d(x,y): x\in A, y\in B\} > 0$). A theorem due to Caratheodory shows then that the Borel sets are $\mu$-measurable (see Outer measure#Caratheodory criterion, also for the notion of $\mu$-measurability). The restriction of $\mu$ to the $\sigma$-algebra of $\mu$-measurable sets is called, by some authors, the Caratheodory measure induced by the metric outer measure $\mu$.

The converse is also true: if $\mu$ is an outer measure on a metric space $(X,d)$ for which the open set are $\mu$-measurable, then $\mu$ is a metric outer measure (see for instance Remark (8c) of Section 11 in [Ha]).

Caratheodory outer measures with respect to a class of functions

More generally, given a set $X$ and a class $\Gamma$ of real functions on $X$, some authors (see for instance Section 7 of Chapter 12 in [Ro]) call Caratheodory outer measures with respect to $\Gamma$ those outer measures $\mu$ on $\mathcal{P} (X)$ with the property that \eqref{e:additive} holds when $A$ and $B$ are separated by $\Gamma$, i.e. when there is a function $\varphi\in \Gamma$ with $\inf_A\; \varphi > \sup_B \varphi$ or $\inf_B\;\varphi > \sup_B\; \varphi$.

If $(X,d)$ is a metric space and we chose as $\Gamma$ the set of functions of type $x\mapsto {\rm dist}\, (x, E)$ with $E\subset X$, then a Caratheodory outer measure with respect to $\Gamma$ corresponds to a Caratheodory outer measure in the sense of the previous section.

Caratheodory (outer) measures in the Euclidean space

Some authors use the term Caratheodory (outer) measures for a special class of outer measures defined on the subsets of the euclidean space $\mathbb R^n$ and constructed in a fashion similar to the usual Hausdorff (outer) measures. Cp. for instance with Sections 2.1.3-2.1.4-2.1.5 of [KP] and Sections 2.10.2-2.10.3-2.10.4 of [Fe].

References

[Ca] C. Carathéodory, "Über das lineare Mass von Punktmengen, eine Verallgemeinerung des Längenbegriffs" Nachr. Gesell. Wiss. Göttingen (1914) pp. 404–426.
[EG] L.C. Evans, R.F. Gariepy, "Measure theory and fine properties of functions" Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. MR1158660 Zbl 0804.2800
[Fe] H. Federer, "Geometric measure theory". Volume 153 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York Inc., New York, 1969. MR0257325 Zbl 0874.49001
[Ha] P.R. Halmos, "Measure theory" , v. Nostrand (1950) MR0033869 Zbl 0040.16802
[KP] S. G. Krantz, H. Parks, "Geometric Integration Theory", Birkhäuser (2008).
[Ma] P. Mattila, "Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability". Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. MR1333890 Zbl 0911.28005
[Mu] M. E. Munroe, "Introduction to Measure and Integration". Addison Wesley (1953).
[Ro] H.L. Royden, "Real analysis" , Macmillan (1969). MR0151555 Zbl 0197.03501
How to Cite This Entry:
Carathéodory measure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Carath%C3%A9odory_measure&oldid=29116
This article was adapted from an original article by V.V. Sazonov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article