Namespaces
Variants
Actions

Difference between revisions of "Cantor manifold"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c0202301.png" />-dimensional compact space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c0202302.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c0202303.png" />, in which any [[Partition|partition]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c0202304.png" /> between non-empty sets has dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c0202305.png" />. An equivalent definition is: An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c0202306.png" />-dimensional Cantor manifold is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c0202307.png" />-dimensional compact space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c0202308.png" /> such that for each representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c0202309.png" /> as the union of two non-empty closed proper subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023012.png" />. One-dimensional metrizable Cantor manifolds are one-dimensional continua or Cantor curves (cf. [[Cantor curve|Cantor curve]]).
+
<!--
 +
c0202301.png
 +
$#A+1 = 81 n = 0
 +
$#C+1 = 81 : ~/encyclopedia/old_files/data/C020/C.0200230 Cantor manifold
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The concept of a Cantor manifold was introduced by P.S. Urysohn (see [[#References|[1]]]). An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023013.png" />-dimensional closed ball, and therefore an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023014.png" />-dimensional closed manifold, are Cantor manifolds; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023015.png" />-dimensional Euclidean space cannot be partitioned by a set of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023016.png" /> (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023017.png" />, this is Urysohn's theorem, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023018.png" />, Aleksandrov's theorem). An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023019.png" />-dimensional Cantor manifold is the common boundary of two regions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023020.png" />-dimensional Euclidean space, one of which is bounded (Aleksandrov's theorem). The main fact in the theory of Cantor manifolds is that every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023021.png" />-dimensional compact space contains an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023022.png" />-dimensional Cantor manifold (Aleksandrov's theorem).
+
{{TEX|auto}}
 +
{{TEX|done}}
  
A maximal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023023.png" />-dimensional Cantor manifold in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023024.png" />-dimensional compact space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023025.png" /> is called a dimensional component of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023026.png" />. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023027.png" />-dimensional Cantor submanifold of a compact Hausdorff space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023028.png" /> is contained in a unique dimensional component of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023029.png" />. The intersection of two distinct dimensional components of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023030.png" />-dimensional compact Hausdorff space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023031.png" /> has dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023032.png" />. In particular, dimensional components of a one-dimensional compact Hausdorff space are components of it. The set of dimensional components of a finite-dimensional compact metric space is finite, countable or has the cardinality of the continuum. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023033.png" /> is an arbitrary dimensional component of a perfectly-normal compact space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023035.png" /> is the union of all remaining dimensional components, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023036.png" /> (Aleksandrov's theorem). In a hereditarily-normal first-countable compact Hausdorff space, a dimensional component may be contained in the union of the remaining dimensional components.
+
An  $  n $-
 +
dimensional compact space $  X $,
 +
$  \mathop{\rm dim}  X = n $,
 +
in which any [[Partition|partition]]  $  B $
 +
between non-empty sets has dimension  $  \mathop{\rm dim}  B \geq  n - 1 $.  
 +
An equivalent definition is: An $  n $-
 +
dimensional Cantor manifold is an $  n $-
 +
dimensional compact space $  X $
 +
such that for each representation of $  X $
 +
as the union of two non-empty closed proper subsets  $  X _ {1} $
 +
and $  X _ {2} $,  
 +
$  \mathop{\rm dim}  ( X _ {1} \cap X _ {2} ) \geq  n - 1 $.  
 +
One-dimensional metrizable Cantor manifolds are one-dimensional continua or Cantor curves (cf. [[Cantor curve|Cantor curve]]).
  
The union <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023037.png" /> of all dimensional components of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023038.png" />-dimensional compact space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023039.png" /> is called the interior dimensional kernel of the space. In view of the monotonicity of dimension, it is always true that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023041.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023042.png" /> is a perfectly-normal compact space. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023043.png" /> contains no <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023044.png" />-dimensional compact set. But even for Hausdorff compacta it is not known (1978) whether <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023045.png" />. With regard to hereditarily-normal compact spaces, the interior dimensional kernel and its complement can have all permissible dimensions; that is to say, assuming the validity of the continuum hypothesis, for any triple of integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023046.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023048.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023049.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023051.png" />, there exists a hereditarily-normal compact space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023052.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023053.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023054.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023055.png" />.
+
The concept of a Cantor manifold was introduced by P.S. Urysohn (see [[#References|[1]]]). An  $  n $-
 +
dimensional closed ball, and therefore an $  n $-
 +
dimensional closed manifold, are Cantor manifolds;  $  n $-
 +
dimensional Euclidean space cannot be partitioned by a set of dimension $  \leq  n - 2 $(
 +
for  $  n = 3 $,  
 +
this is Urysohn's theorem, for  $  n > 3 $,
 +
Aleksandrov's theorem). An  $  ( n - 1 ) $-
 +
dimensional Cantor manifold is the common boundary of two regions of  $  n $-
 +
dimensional Euclidean space, one of which is bounded (Aleksandrov's theorem). The main fact in the theory of Cantor manifolds is that every  $  n $-
 +
dimensional compact space contains an  $  n $-
 +
dimensional Cantor manifold (Aleksandrov's theorem).
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023056.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023057.png" /> (as defined by Urysohn) is the inductive dimensional kernel, that is, the set of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023058.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023059.png" />. The inductive dimensional kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023060.png" /> of a compact metric set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023061.png" /> is always an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023062.png" /> set. It is not known whether the same holds for the interior dimensional kernel. For compact Hausdorff spaces however, neither the inductive dimensional kernel nor the interior dimensional kernel need be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023063.png" /> set. At each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023064.png" />,
+
A maximal  $  n $-
 +
dimensional Cantor manifold in an  $  n $-
 +
dimensional compact space  $  X $
 +
is called a dimensional component of  $  X $.  
 +
An  $  n $-
 +
dimensional Cantor submanifold of a compact Hausdorff space  $  X $
 +
is contained in a unique dimensional component of  $  X $.  
 +
The intersection of two distinct dimensional components of an  $  n $-
 +
dimensional compact Hausdorff space  $  X $
 +
has dimension  $  \leq  n - 2 $.  
 +
In particular, dimensional components of a one-dimensional compact Hausdorff space are components of it. The set of dimensional components of a finite-dimensional compact metric space is finite, countable or has the cardinality of the continuum. If  $  A $
 +
is an arbitrary dimensional component of a perfectly-normal compact space  $  X $
 +
and  $  B $
 +
is the union of all remaining dimensional components, then  $  \mathop{\rm dim} ( A \cap B ) \leq  m - 2 $(
 +
Aleksandrov's theorem). In a hereditarily-normal first-countable compact Hausdorff space, a dimensional component may be contained in the union of the remaining dimensional components.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023065.png" /></td> </tr></table>
+
The union  $  K _ {X} $
 +
of all dimensional components of an  $  n $-
 +
dimensional compact space  $  X $
 +
is called the interior dimensional kernel of the space. In view of the monotonicity of dimension, it is always true that  $  \mathop{\rm dim}  K _ {X} = \mathop{\rm dim}  X $
 +
and  $  \mathop{\rm dim} ( X \setminus  K _ {X} ) \leq  \mathop{\rm dim}  X $
 +
when  $  X $
 +
is a perfectly-normal compact space. The set  $  X \setminus  K _ {X} $
 +
contains no  $  n $-
 +
dimensional compact set. But even for Hausdorff compacta it is not known (1978) whether  $  \mathop{\rm dim} ( X \setminus  K _ {X} ) = \mathop{\rm dim}  X $.
 +
With regard to hereditarily-normal compact spaces, the interior dimensional kernel and its complement can have all permissible dimensions; that is to say, assuming the validity of the continuum hypothesis, for any triple of integers  $  n $,
 +
$  n _ {1} $
 +
and  $  n _ {2} $
 +
with  $  n \geq  1 $,
 +
$  n _ {1} \geq  n $
 +
and  $  n _ {2} \geq  0 $,
 +
there exists a hereditarily-normal compact space  $  X $
 +
of dimension  $  n $
 +
such that  $  \mathop{\rm dim}  K _ {X} = n _ {1} $
 +
and  $  \mathop{\rm dim} ( X \setminus  K _ {X} ) = n _ {2} $.
  
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023066.png" /> is compact metric (Menger's theorem). Therefore for an arbitrary compact metric space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023067.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023068.png" /> is everywhere dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023069.png" />. This does not carry over to arbitrary compact Hausdorff spaces. It remains an open question (1978) whether a point is contained in the inductive dimensional kernel along with some non-degenerate continuum.
+
If  $  \mathop{\rm dim}  X = \mathop{\rm ind}  X $,
 +
then  $  K _ {X} \subset  N _ {X} $(
 +
as defined by Urysohn) is the inductive dimensional kernel, that is, the set of all  $  x \in X $
 +
for which  $  \mathop{\rm ind} _ {x}  X = n $.  
 +
The inductive dimensional kernel  $  N _ {X} $
 +
of a compact metric set  $  X $
 +
is always an  $  F _  \sigma  $
 +
set. It is not known whether the same holds for the interior dimensional kernel. For compact Hausdorff spaces however, neither the inductive dimensional kernel nor the interior dimensional kernel need be an  $  F _  \sigma  $
 +
set. At each point  $  x \in N _ {X} $,
  
A finite-dimensional continuum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023070.png" /> whose interior dimensional kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023071.png" /> is everywhere dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023072.png" /> is called a generalized Cantor manifold. The common boundary of two open subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023073.png" />-dimensional Euclidean space is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023074.png" />-dimensional generalized Cantor manifold. In a metrizable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023075.png" />-dimensional generalized Cantor manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023076.png" /> there may be an everywhere-dense set of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023077.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023078.png" />. Neither products nor continuous mappings preserve the property of being a generalized Cantor manifold. The same is true concerning the property of being a Cantor manifold.
+
$$
 +
\mathop{\rm ind} _ {x}  N _ {X}  =   \mathop{\rm ind} _ {x}  X ,
 +
$$
  
A compact space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023079.png" /> is called an infinite-dimensional Cantor manifold if there is no method of partitioning it by a weakly infinite-dimensional closed subset.
+
if  $  X $
 +
is compact metric (Menger's theorem). Therefore for an arbitrary compact metric space  $  X $,
 +
$  K _ {X} $
 +
is everywhere dense in  $  N _ {X} $.
 +
This does not carry over to arbitrary compact Hausdorff spaces. It remains an open question (1978) whether a point is contained in the inductive dimensional kernel along with some non-degenerate continuum.
 +
 
 +
A finite-dimensional continuum  $  X $
 +
whose interior dimensional kernel  $  K _ {X} $
 +
is everywhere dense in  $  X $
 +
is called a generalized Cantor manifold. The common boundary of two open subsets of  $  n $-
 +
dimensional Euclidean space is an  $  ( n - 1 ) $-
 +
dimensional generalized Cantor manifold. In a metrizable  $  n $-
 +
dimensional generalized Cantor manifold  $  X $
 +
there may be an everywhere-dense set of points  $  x $
 +
for which  $  \mathop{\rm ind} _ {x}  X < n $.  
 +
Neither products nor continuous mappings preserve the property of being a generalized Cantor manifold. The same is true concerning the property of being a Cantor manifold.
 +
 
 +
A compact space  $  X $
 +
is called an infinite-dimensional Cantor manifold if there is no method of partitioning it by a weakly infinite-dimensional closed subset.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Urysohn,  "Works on topology and other areas of mathematics" , '''1''' , Moscow-Leningrad  (1951)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P [P.S. Aleksandrov] Alexandroff,  "Untersuchungen über Gestalt und lage abqeschlossener Menge beliebiqer Dimension"  ''Ann. of Math.'' , '''30'''  (1929)  pp. 101–187</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  P.S. Aleksandrov,  "On the dimension of normal spaces"  ''Proc. Royal. Soc. London Ser. A'' , '''189'''  (1947)  pp. 11–39</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  P.S. Aleksandrov,  B.A. Pasynkov,  "Introduction to dimension theory" , Moscow  (1973)  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  V.V. Fedorchuk,  "On dimensional components of compact spaces"  ''Soviet Math. Dokl.'' , '''15''' :  2  (1974)  pp. 505–509  ''Dokl. Akad. Nauk SSSR'' , '''215''' :  2  (1974)  pp. 289–292</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  K. Menger,  "Dimensiontheorie" , Teubner  (1928)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  E.G. Sklyarenko,  "Dimensionality properties of infinite-dimensional spaces"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''23''' :  2  (1959)  pp. 197–212  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Urysohn,  "Works on topology and other areas of mathematics" , '''1''' , Moscow-Leningrad  (1951)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P [P.S. Aleksandrov] Alexandroff,  "Untersuchungen über Gestalt und lage abqeschlossener Menge beliebiqer Dimension"  ''Ann. of Math.'' , '''30'''  (1929)  pp. 101–187</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  P.S. Aleksandrov,  "On the dimension of normal spaces"  ''Proc. Royal. Soc. London Ser. A'' , '''189'''  (1947)  pp. 11–39</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  P.S. Aleksandrov,  B.A. Pasynkov,  "Introduction to dimension theory" , Moscow  (1973)  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  V.V. Fedorchuk,  "On dimensional components of compact spaces"  ''Soviet Math. Dokl.'' , '''15''' :  2  (1974)  pp. 505–509  ''Dokl. Akad. Nauk SSSR'' , '''215''' :  2  (1974)  pp. 289–292</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  K. Menger,  "Dimensiontheorie" , Teubner  (1928)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  E.G. Sklyarenko,  "Dimensionality properties of infinite-dimensional spaces"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''23''' :  2  (1959)  pp. 197–212  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The theorems attributed to Aleksandrov are not only due to him: The theorem on partitions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023080.png" />-dimensional Euclidean space is attributed to K. Menger [[#References|[a5]]] and Urysohn [[#References|[a1]]] and [[#References|[a2]]].
+
The theorems attributed to Aleksandrov are not only due to him: The theorem on partitions of $  n $-
 +
dimensional Euclidean space is attributed to K. Menger [[#References|[a5]]] and Urysohn [[#References|[a1]]] and [[#References|[a2]]].
  
 
The Cantor manifold theorem for compact metric spaces is due to W. Hurewicz and Menger [[#References|[a3]]] and L.A. Tumarkin [[#References|[a6]]]. Aleksandrov generalized it to arbitrary compact Hausdorff spaces in [[#References|[3]]]. Finally, the theorem on intersections of dimensional components was proved by S. Mazurkiewicz in [[#References|[a4]]] for compact metric spaces, Aleksandrov generalized it to perfectly-normal compact spaces.
 
The Cantor manifold theorem for compact metric spaces is due to W. Hurewicz and Menger [[#References|[a3]]] and L.A. Tumarkin [[#References|[a6]]]. Aleksandrov generalized it to arbitrary compact Hausdorff spaces in [[#References|[3]]]. Finally, the theorem on intersections of dimensional components was proved by S. Mazurkiewicz in [[#References|[a4]]] for compact metric spaces, Aleksandrov generalized it to perfectly-normal compact spaces.
  
It is not true that every infinite-dimensional compact space contains an infinite-dimensional Cantor manifold, as there are many compact metric weakly infinite-dimensional spaces, e.g. the one-point compactification of the topological sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020230/c02023081.png" /> of cubes of increasing dimension.
+
It is not true that every infinite-dimensional compact space contains an infinite-dimensional Cantor manifold, as there are many compact metric weakly infinite-dimensional spaces, e.g. the [[one-point compactification]] of the topological sum $  \oplus _ {n=1}  ^  \infty  I ^ { n } $
 +
of cubes of increasing dimension.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.S. Urysohn,  "Mémoire sur les multiplicités cantoriennes"  ''Fund. Math.'' , '''7'''  (1925)  pp. 30–137</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R. Engelking,  "Dimension theory" , North-Holland &amp; PWN  (1978)  pp. 19; 50</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  W. Hurewicz,  K. Menger,  "Dimension and Zusammenhangsstuffe"  ''Math. Ann.'' , '''100'''  (1928)  pp. 618–633</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  S. Mazurkiewicz,  "Ein Satz über dimensionelle Komponenten"  ''Fund. Math.'' , '''20'''  (1933)  pp. 98–99</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  K. Menger,  "Über die dimension von Punktmengen II"  ''Monatsh. für Math. and Phys.'' , '''34'''  (1926)  pp. 137–161</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  L.A. Tumarkin,  "Sur la structure dimensionelle des ensembles fermés"  ''C.R. Acad. Paris'' , '''186'''  (1928)  pp. 420–422</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.S. Urysohn,  "Mémoire sur les multiplicités cantoriennes"  ''Fund. Math.'' , '''7'''  (1925)  pp. 30–137</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R. Engelking,  "Dimension theory" , North-Holland &amp; PWN  (1978)  pp. 19; 50</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  W. Hurewicz,  K. Menger,  "Dimension and Zusammenhangsstuffe"  ''Math. Ann.'' , '''100'''  (1928)  pp. 618–633</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  S. Mazurkiewicz,  "Ein Satz über dimensionelle Komponenten"  ''Fund. Math.'' , '''20'''  (1933)  pp. 98–99</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  K. Menger,  "Über die dimension von Punktmengen II"  ''Monatsh. für Math. and Phys.'' , '''34'''  (1926)  pp. 137–161</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  L.A. Tumarkin,  "Sur la structure dimensionelle des ensembles fermés"  ''C.R. Acad. Paris'' , '''186'''  (1928)  pp. 420–422</TD></TR></table>

Latest revision as of 06:29, 30 May 2020


An $ n $- dimensional compact space $ X $, $ \mathop{\rm dim} X = n $, in which any partition $ B $ between non-empty sets has dimension $ \mathop{\rm dim} B \geq n - 1 $. An equivalent definition is: An $ n $- dimensional Cantor manifold is an $ n $- dimensional compact space $ X $ such that for each representation of $ X $ as the union of two non-empty closed proper subsets $ X _ {1} $ and $ X _ {2} $, $ \mathop{\rm dim} ( X _ {1} \cap X _ {2} ) \geq n - 1 $. One-dimensional metrizable Cantor manifolds are one-dimensional continua or Cantor curves (cf. Cantor curve).

The concept of a Cantor manifold was introduced by P.S. Urysohn (see [1]). An $ n $- dimensional closed ball, and therefore an $ n $- dimensional closed manifold, are Cantor manifolds; $ n $- dimensional Euclidean space cannot be partitioned by a set of dimension $ \leq n - 2 $( for $ n = 3 $, this is Urysohn's theorem, for $ n > 3 $, Aleksandrov's theorem). An $ ( n - 1 ) $- dimensional Cantor manifold is the common boundary of two regions of $ n $- dimensional Euclidean space, one of which is bounded (Aleksandrov's theorem). The main fact in the theory of Cantor manifolds is that every $ n $- dimensional compact space contains an $ n $- dimensional Cantor manifold (Aleksandrov's theorem).

A maximal $ n $- dimensional Cantor manifold in an $ n $- dimensional compact space $ X $ is called a dimensional component of $ X $. An $ n $- dimensional Cantor submanifold of a compact Hausdorff space $ X $ is contained in a unique dimensional component of $ X $. The intersection of two distinct dimensional components of an $ n $- dimensional compact Hausdorff space $ X $ has dimension $ \leq n - 2 $. In particular, dimensional components of a one-dimensional compact Hausdorff space are components of it. The set of dimensional components of a finite-dimensional compact metric space is finite, countable or has the cardinality of the continuum. If $ A $ is an arbitrary dimensional component of a perfectly-normal compact space $ X $ and $ B $ is the union of all remaining dimensional components, then $ \mathop{\rm dim} ( A \cap B ) \leq m - 2 $( Aleksandrov's theorem). In a hereditarily-normal first-countable compact Hausdorff space, a dimensional component may be contained in the union of the remaining dimensional components.

The union $ K _ {X} $ of all dimensional components of an $ n $- dimensional compact space $ X $ is called the interior dimensional kernel of the space. In view of the monotonicity of dimension, it is always true that $ \mathop{\rm dim} K _ {X} = \mathop{\rm dim} X $ and $ \mathop{\rm dim} ( X \setminus K _ {X} ) \leq \mathop{\rm dim} X $ when $ X $ is a perfectly-normal compact space. The set $ X \setminus K _ {X} $ contains no $ n $- dimensional compact set. But even for Hausdorff compacta it is not known (1978) whether $ \mathop{\rm dim} ( X \setminus K _ {X} ) = \mathop{\rm dim} X $. With regard to hereditarily-normal compact spaces, the interior dimensional kernel and its complement can have all permissible dimensions; that is to say, assuming the validity of the continuum hypothesis, for any triple of integers $ n $, $ n _ {1} $ and $ n _ {2} $ with $ n \geq 1 $, $ n _ {1} \geq n $ and $ n _ {2} \geq 0 $, there exists a hereditarily-normal compact space $ X $ of dimension $ n $ such that $ \mathop{\rm dim} K _ {X} = n _ {1} $ and $ \mathop{\rm dim} ( X \setminus K _ {X} ) = n _ {2} $.

If $ \mathop{\rm dim} X = \mathop{\rm ind} X $, then $ K _ {X} \subset N _ {X} $( as defined by Urysohn) is the inductive dimensional kernel, that is, the set of all $ x \in X $ for which $ \mathop{\rm ind} _ {x} X = n $. The inductive dimensional kernel $ N _ {X} $ of a compact metric set $ X $ is always an $ F _ \sigma $ set. It is not known whether the same holds for the interior dimensional kernel. For compact Hausdorff spaces however, neither the inductive dimensional kernel nor the interior dimensional kernel need be an $ F _ \sigma $ set. At each point $ x \in N _ {X} $,

$$ \mathop{\rm ind} _ {x} N _ {X} = \mathop{\rm ind} _ {x} X , $$

if $ X $ is compact metric (Menger's theorem). Therefore for an arbitrary compact metric space $ X $, $ K _ {X} $ is everywhere dense in $ N _ {X} $. This does not carry over to arbitrary compact Hausdorff spaces. It remains an open question (1978) whether a point is contained in the inductive dimensional kernel along with some non-degenerate continuum.

A finite-dimensional continuum $ X $ whose interior dimensional kernel $ K _ {X} $ is everywhere dense in $ X $ is called a generalized Cantor manifold. The common boundary of two open subsets of $ n $- dimensional Euclidean space is an $ ( n - 1 ) $- dimensional generalized Cantor manifold. In a metrizable $ n $- dimensional generalized Cantor manifold $ X $ there may be an everywhere-dense set of points $ x $ for which $ \mathop{\rm ind} _ {x} X < n $. Neither products nor continuous mappings preserve the property of being a generalized Cantor manifold. The same is true concerning the property of being a Cantor manifold.

A compact space $ X $ is called an infinite-dimensional Cantor manifold if there is no method of partitioning it by a weakly infinite-dimensional closed subset.

References

[1] P.S. Urysohn, "Works on topology and other areas of mathematics" , 1 , Moscow-Leningrad (1951) (In Russian)
[2] P [P.S. Aleksandrov] Alexandroff, "Untersuchungen über Gestalt und lage abqeschlossener Menge beliebiqer Dimension" Ann. of Math. , 30 (1929) pp. 101–187
[3] P.S. Aleksandrov, "On the dimension of normal spaces" Proc. Royal. Soc. London Ser. A , 189 (1947) pp. 11–39
[4] P.S. Aleksandrov, B.A. Pasynkov, "Introduction to dimension theory" , Moscow (1973) (In Russian)
[5] V.V. Fedorchuk, "On dimensional components of compact spaces" Soviet Math. Dokl. , 15 : 2 (1974) pp. 505–509 Dokl. Akad. Nauk SSSR , 215 : 2 (1974) pp. 289–292
[6] K. Menger, "Dimensiontheorie" , Teubner (1928)
[7] E.G. Sklyarenko, "Dimensionality properties of infinite-dimensional spaces" Izv. Akad. Nauk SSSR Ser. Mat. , 23 : 2 (1959) pp. 197–212 (In Russian)

Comments

The theorems attributed to Aleksandrov are not only due to him: The theorem on partitions of $ n $- dimensional Euclidean space is attributed to K. Menger [a5] and Urysohn [a1] and [a2].

The Cantor manifold theorem for compact metric spaces is due to W. Hurewicz and Menger [a3] and L.A. Tumarkin [a6]. Aleksandrov generalized it to arbitrary compact Hausdorff spaces in [3]. Finally, the theorem on intersections of dimensional components was proved by S. Mazurkiewicz in [a4] for compact metric spaces, Aleksandrov generalized it to perfectly-normal compact spaces.

It is not true that every infinite-dimensional compact space contains an infinite-dimensional Cantor manifold, as there are many compact metric weakly infinite-dimensional spaces, e.g. the one-point compactification of the topological sum $ \oplus _ {n=1} ^ \infty I ^ { n } $ of cubes of increasing dimension.

References

[a1] P.S. Urysohn, "Mémoire sur les multiplicités cantoriennes" Fund. Math. , 7 (1925) pp. 30–137
[a2] R. Engelking, "Dimension theory" , North-Holland & PWN (1978) pp. 19; 50
[a3] W. Hurewicz, K. Menger, "Dimension and Zusammenhangsstuffe" Math. Ann. , 100 (1928) pp. 618–633
[a4] S. Mazurkiewicz, "Ein Satz über dimensionelle Komponenten" Fund. Math. , 20 (1933) pp. 98–99
[a5] K. Menger, "Über die dimension von Punktmengen II" Monatsh. für Math. and Phys. , 34 (1926) pp. 137–161
[a6] L.A. Tumarkin, "Sur la structure dimensionelle des ensembles fermés" C.R. Acad. Paris , 186 (1928) pp. 420–422
How to Cite This Entry:
Cantor manifold. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cantor_manifold&oldid=14407
This article was adapted from an original article by V.V. Fedorchuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article