Namespaces
Variants
Actions

CR-manifold

From Encyclopedia of Mathematics
Revision as of 16:55, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In 1907, H. Poincaré wrote a seminal paper, [a6], in which he showed that two real hypersurfaces in are, in general, biholomorphically inequivalent (cf. Biholomorphic mapping; Hypersurface). Later, E. Cartan [a10], [a11] found all the invariants that distinguish one real hypersurface from another. The general solution for complex dimensions greater than two was given by S.S. Chern and J. Moser [a3] and N. Tanaka [a8], [a7].

The concept of a CR-manifold (CR-structure) has been defined having in mind the geometric structure induced on a real hypersurface of , .

Let be a real differentiable manifold and the tangent bundle of . One says that is a CR-manifold if there exists a complex subbundle of the complexified tangent bundle satisfying the conditions:

;

is involutive, i.e., for any complex vector fields and in the Lie bracket is also in .

Alternatively, by using real vector bundles it can be proved (cf. [a1]) that is a CR-manifold if and only if there exists an almost-complex distribution on (i.e., is a vector subbundle of and is an almost-complex structure on ) such that

lies in ;

for any real vector fields , in .

Thus the CR-structure on is determined either by the complex vector bundle or by the almost-complex distribution . The abbreviation CR refers to A.L. Cauchy and B. Riemann, because, for in , consists of the induced Cauchy–Riemann operators (cf. Cauchy–Riemann conditions).

A -function is called a CR-function if for all complex vector fields in . A -mapping is said to be a CR-mapping if , where is the tangent mapping of . In particular, if is a diffeomorphism, one says that is a pseudo-conformal mapping and that and are CR-diffeomorphic or, briefly, that they are equivalent. A CR-structure on is said to be realizable if is equivalent to some real hypersurface of a complex Euclidean space.

Let be the natural projection mapping. Then the Levi form for is the mapping

for any complex vector field in . If is the real hypersurface in given by the equation , where is smooth, then the Levi form for is identified with the restriction of the complex Hessian of to (cf. also Hessian matrix). When is positive- or negative-definite on , one says that is strictly pseudo-convex.

The differential geometry of CR-manifolds (cf. [a4]) has potential applications to both partial differential equations (cf. [a2]) and mathematical physics (cf. [a5] and [a9]).

References

[a1] A. Bejancu, "Geometry of CR submanifolds" , Reidel (1986)
[a2] A. Boggess, "CR manifolds and tangential Cauchy–Riemann complex" , CRC (1991)
[a3] S.S. Chern, J. Moser, "Real hypersurfaces in complex manifolds" Acta Math. , 133 (1974) pp. 219–271
[a4] H. Jacobowitz, "An introduction to CR structures" , Math. Surveys and Monographs , 32 , Amer. Math. Soc. (1990)
[a5] R. Penrose, "Physical space-time and non-realizable CR structures" , Proc. Symp. Pure Math. , 39 , Amer. Math. Soc. (1983) pp. 401–422
[a6] H. Poincaré, "Les functions analytiques de deux variables et la représentation conforme" Rend. Circ. Mat. Palermo , 23 (1907) pp. 185–220
[a7] N. Tanaka, "On the pseudo-conformal geometry of hypersurfaces of the space of complex variables" J. Math. Soc. Japan , 14 (1962) pp. 397–429
[a8] N. Tanaka, "On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections" Japan J. Math. (N.S.) , 2 (1976) pp. 131–190
[a9] J.R. Wells, Jr., "Complex manifolds and mathematical physics" Bull. Amer. Math. Soc. (N.S.) , 1 (1979) pp. 296–336
[a10] É. Cartan, "Sur l'équivalence pseudo-conforme des hypersurfaces de l'espace de deux variables complexes I." Ann. Mathém. , 11 (1932) pp. 17–90
[a11] É. Cartan, "Sur l'équivalence pseudo-conforme des hypersurfaces de l'espace de deux variable complexes II." Ann. Scuola Norm. Sup. Pisa , 1 (1932) pp. 333–354
How to Cite This Entry:
CR-manifold. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=CR-manifold&oldid=11362
This article was adapted from an original article by A. Bejancu (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article