Namespaces
Variants
Actions

Difference between revisions of "Budan-Fourier theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex,mr,zbl,msc,additional references,dates corrected)
(added Serret reference to clarify that we are talking about Fourier's statement of the theorem)
Line 1: Line 1:
 
{{MSC|12Y|65T}}
 
{{MSC|12Y|65T}}
 
{{TEX|done}}
 
{{TEX|done}}
 +
 +
As in Serret{{Cite|Se}}, footnote p. 267, we alert the reader that the following statement is due to Fourier{{Cite|Fo}}
  
 
The number of roots of an algebraic equation
 
The number of roots of an algebraic equation
Line 28: Line 30:
 
|-
 
|-
 
|valign="top"|{{Ref|Ho}}||valign="top"|  A.S. Householder,  "Unitary triangularization of a nonsymmetric matrix"  ''J. Assoc. Comp. Mach.'', '''5'''  (1958)  pp. 339–342  {{MR|0111128}} {{ZBL|0121.33802}}
 
|valign="top"|{{Ref|Ho}}||valign="top"|  A.S. Householder,  "Unitary triangularization of a nonsymmetric matrix"  ''J. Assoc. Comp. Mach.'', '''5'''  (1958)  pp. 339–342  {{MR|0111128}} {{ZBL|0121.33802}}
 +
|-
 +
|valign="top"|{{Ref|Se}}||valign="top"|Serret, Joseph A.,"Cours d'algèbre supérieure", Tome I,Paris, Gauthier-Villars (1877)
 +
[http://archive.org/details/coursdalgbresu01serruoft]
 
|-
 
|-
 
|}
 
|}

Revision as of 09:06, 17 April 2012

2020 Mathematics Subject Classification: Primary: 12Y Secondary: 65T [MSN][ZBL]

As in Serret[Se], footnote p. 267, we alert the reader that the following statement is due to Fourier[Fo]

The number of roots of an algebraic equation

$$f(x)=0$$ comprised in an interval $(a,b), a<b$, is equal to or is smaller, by an even number, than $\tau=t_1-t_2$, where $t_1$ is the number of changes in sign in the series of derivatives of the polynomial $f(x)$ at the point $a$, i.e. in the series

$$f(a),f'(a),\dots,f^{(n)}(a),$$ while $t_2$ is the number of changes in sign in this series at the point $b$. Each multiple root is counted according to its multiplicity. Established by F. Budan (1807) [Bu] and J. Fourier (1820) [Fo].

Comments

An application of the Budan–Fourier theorem in numerical analysis may be found in [BoSc], where it is used in the interpolation by spline functions.


References

[AlMaCh] P.S. Alexandroff, A.T. Markuschewitsch, A.J. Chintschin, "Encyclopaedia of elementary mathematics", 2. Algebra, Moscow-Leningrad (1951) pp. 331 (In Russian) MR0080060 Zbl 0365.00003
[BoSc] C. de Boor, I.J. Schoenberg, "Cardinal interpolation and spline functions VIII. The Budan–Fourier theorem for splines and applications." K. Bohmer (ed.) G. Meinardus (ed.) W. Schempp (ed.), Spline functions, Lect. notes in math., 501, Springer (1976) MR0493059 Zbl 0319.41010
[Bu] Budan, F. D., " Nouvelle méthode pour la résolution des équations numériques", Paris: Courcier (1807) google books
[Fo] J.P.J. Fourier, "Sur l'usage du théoréme de Descartes dans la recherche des limites des racines", Bulletin des Sciences, par la Société Philomatique de Paris (1820) pp.156-165.
[Ho] A.S. Householder, "Unitary triangularization of a nonsymmetric matrix" J. Assoc. Comp. Mach., 5 (1958) pp. 339–342 MR0111128 Zbl 0121.33802
[Se] Serret, Joseph A.,"Cours d'algèbre supérieure", Tome I,Paris, Gauthier-Villars (1877)

[1]

How to Cite This Entry:
Budan-Fourier theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Budan-Fourier_theorem&oldid=24605
This article was adapted from an original article by O.A. Ivanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article