Namespaces
Variants
Actions

Bruhat decomposition

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 20G [MSN][ZBL]

The Bruhat decomposition is a representation of a connected split algebraic reductive group $G$, as the union of double cosets of a Borel subgroup, parametrized by the Weyl group of $G$. More exactly, let $B,B^-$ be opposite Borel subgroups of a reductive group $G$; let $U,U^-$ be the respective unipotent parts of $B,B^-$ (cf. Linear algebraic group) and let $W$ be the Weyl group of $G$. In what follows $w$ denotes both an element of $W$ and its representative in the normalizer of the torus $B\cap B^-$, since the construction presented below is independent of the representative chosen. The group $U_w^- = U\cap wU^-w^{-1}$ will then be considered for each $w\in W$. The group $G$ is then representable as the union of the non-intersecting double cosets $BwB$ ($w\in W$), and the morphism $U_w^-\times B \to BwB$ defined by $(x,y)\mapsto xwy$ is an isomorphism of algebraic varieties. An even more precise formulation of the Bruhat decomposition will yield a cellular decomposition of the projective variety $G/B$. Namely, if $x_0$ is a fixed (with respect to the left shifts by elements from $B$) point of $G/B$ (such a point always exists, cf. Borel fixed-point theorem), $G/B$ will be the union of non-intersecting $U$-orbits of the type $U(w(x_0))$, $w\in W$ (cf. Algebraic group of transformations), and the morphism $U_w^- \to Uw(x_0)$ ($u\mapsto u(w(x_0))$) is an isomorphism of algebraic varieties. All groups $U_w^-$, being varieties, are isomorphic to an affine space; if the ground field is the field of complex numbers, then each of the above $U$-orbits is a cell in the sense of algebraic topology so that the homology of $G/B$ can be calculated. The existence of a Bruhat decomposition for a number of classical groups was established in 1956 by F. Bruhat, and was proved in the general case by C. Chevalley [Ch]. A. Borel and J. Tits generalized the construction of Bruhat decompositions to the non split groups $G_k$ of $k$-points of a $k$-defined algebraic group [BoTi], the role of Borel subgroups being played by minimal parabolic $k$-subgroups, the role of the groups $U$ by their unipotent radicals; the Weyl $k$-group $W_k$ or the relative Weyl group was considered instead of $W$.

References

[Bo] A. Borel, "Linear algebraic groups", Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201
[BoTi] A. Borel, J. Tits, "Groupes réductifs" Publ. Math. IHES, 27 (1965) pp. 55–150 MR0207712 Zbl 0145.17402
[Ch] Séminaire C. Chevalley, "Classification des groupes de Lie algébriques", 2, Ecole Norm. Sup. (1956-1958) MR0106966 Zbl 0092.26301
How to Cite This Entry:
Bruhat decomposition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bruhat_decomposition&oldid=25583
This article was adapted from an original article by V.P. Platonov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article