Namespaces
Variants
Actions

Difference between revisions of "Brown-Gitler spectra"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (→‎References: expand bibliodata)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 60 formulas, 60 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
Spectra introduced by E.H. Brown Jr. and S. Gitler [[#References|[a1]]] to study higher-order obstructions to immersions of manifolds (cf. also [[Immersion|Immersion]]; [[Spectrum of spaces|Spectrum of spaces]]). They immediately found wide applicability in a variety of areas of [[Homotopy|homotopy]] theory, most notably in the stable homotopy groups of spheres ([[#References|[a9]]] and [[#References|[a4]]]), in studying homotopy classes of mappings out of various classifying spaces ([[#References|[a3]]], [[#References|[a10]]] and [[#References|[a8]]]), and, as might be expected, in studying the immersion conjecture for manifolds ([[#References|[a2]]] and [[#References|[a5]]]).
 
Spectra introduced by E.H. Brown Jr. and S. Gitler [[#References|[a1]]] to study higher-order obstructions to immersions of manifolds (cf. also [[Immersion|Immersion]]; [[Spectrum of spaces|Spectrum of spaces]]). They immediately found wide applicability in a variety of areas of [[Homotopy|homotopy]] theory, most notably in the stable homotopy groups of spheres ([[#References|[a9]]] and [[#References|[a4]]]), in studying homotopy classes of mappings out of various classifying spaces ([[#References|[a3]]], [[#References|[a10]]] and [[#References|[a8]]]), and, as might be expected, in studying the immersion conjecture for manifolds ([[#References|[a2]]] and [[#References|[a5]]]).
  
The modulo-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b1302801.png" /> [[Homology|homology]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b1302802.png" /> comes equipped with a natural right action of the [[Steenrod algebra|Steenrod algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b1302803.png" /> which is unstable: at the prime <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b1302804.png" />, for example, this means that
+
The modulo-$p$ [[Homology|homology]] $H _{*} X = H_{ *} ( X , {\bf Z} / p {\bf Z} )$ comes equipped with a natural right action of the [[Steenrod algebra|Steenrod algebra]] $\mathcal{A}$ which is unstable: at the prime $2$, for example, this means that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b1302805.png" /></td> </tr></table>
+
\begin{equation*} 0 = \text{Sq} ^ { i } : H _ { n } X \rightarrow H _ { n - i } X , 2 i &gt; n. \end{equation*}
  
Write <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b1302806.png" /> for the [[Category|category]] of all unstable right modules over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b1302807.png" />. This category has enough projective objects; indeed, there is an object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b1302808.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b1302809.png" />, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028010.png" /> and a natural isomorphism
+
Write $\mathcal{U}_{*}$ for the [[Category|category]] of all unstable right modules over $\mathcal{A}$. This category has enough projective objects; indeed, there is an object $G ( n )$, $n \geq 0$, of $\mathcal{U}_{*}$ and a natural isomorphism
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028011.png" /></td> </tr></table>
+
\begin{equation*} \operatorname{Hom}_{\cal U_*}( G ( n ) , M ) \cong M _ { n }, \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028012.png" /> is the vector spaces of elements of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028013.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028014.png" />. The module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028015.png" /> can be explicitly calculated. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028017.png" /> is the universal class, then the evaluation mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028018.png" /> sending <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028019.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028020.png" /> defines an isomorphism
+
where $M _ { n }$ is the vector spaces of elements of degree $n$ in $M$. The module $G ( n )$ can be explicitly calculated. For example, if $p = 2$ and $x _ { n } \in G ( n )_{n}$ is the universal class, then the evaluation mapping $\mathcal A \rightarrow G ( n )$ sending $\theta$ to $x _ { n } \theta$ defines an isomorphism
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028021.png" /></td> </tr></table>
+
\begin{equation*} \Sigma ^ { n } \mathcal{A} / \{ Sq ^ { i } : 2 i &gt; n \} \mathcal{A} \cong G ( n ). \end{equation*}
  
 
These are the dual Brown–Gitler modules.
 
These are the dual Brown–Gitler modules.
  
This pleasant bit of algebra can be only partly reproduced in [[Algebraic topology|algebraic topology]]. For example, for general <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028022.png" /> there is no space whose (reduced) homology is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028023.png" />; specifically, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028024.png" />, the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028025.png" /> cannot support the structure of an unstable [[Co-algebra|co-algebra]] over the Steenrod algebra. However, after stabilizing, this objection does not apply and the following result from [[#References|[a1]]], [[#References|[a4]]], [[#References|[a6]]] holds: There is a unique <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028026.png" />-complete spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028027.png" /> so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028028.png" /> and for all pointed CW-complexes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028029.png" />, the mapping
+
This pleasant bit of algebra can be only partly reproduced in [[Algebraic topology|algebraic topology]]. For example, for general $n$ there is no space whose (reduced) homology is $G ( n )$; specifically, if $p = 2$, the module $G ( 8 )$ cannot support the structure of an unstable [[Co-algebra|co-algebra]] over the Steenrod algebra. However, after stabilizing, this objection does not apply and the following result from [[#References|[a1]]], [[#References|[a4]]], [[#References|[a6]]] holds: There is a unique $p$-complete spectrum $T ( n )$ so that $H_{*} T ( n ) \cong G ( n )$ and for all pointed CW-complexes $Z$, the mapping
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028030.png" /></td> </tr></table>
+
\begin{equation*} [ T ( n ) , \Sigma ^ { \infty } Z ] \rightarrow \overline { H } _ { n } Z \end{equation*}
  
sending <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028031.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028032.png" /> is surjective. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028033.png" /> is the suspension spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028034.png" />, the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028035.png" /> denotes stable homotopy classes of mappings, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028036.png" /> is reduced homology. The spectra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028037.png" /> are the dual Brown–Gitler spectra. The Brown–Gitler spectra themselves can be obtained by the formula
+
sending $f$ to $f * ( x _ { n } )$ is surjective. Here, $\sum ^ { \infty } Z$ is the suspension spectrum of $Z$, the symbol $[ \cdot , \cdot ]$ denotes stable homotopy classes of mappings, and $\overline { H }$ is reduced homology. The spectra $T ( n )$ are the dual Brown–Gitler spectra. The Brown–Gitler spectra themselves can be obtained by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028038.png" /></td> </tr></table>
+
\begin{equation*} B ( n ) = \Sigma ^ { n } D T ( n ), \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028039.png" /> denotes the Spanier–Whitehead duality functor. The suspension factor is a normalization introduced to put the bottom cohomology class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028040.png" /> in degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028041.png" />. An easy calculation shows that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028042.png" /> for all prime numbers and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028043.png" />.
+
where $D$ denotes the Spanier–Whitehead duality functor. The suspension factor is a normalization introduced to put the bottom cohomology class of $B ( n )$ in degree $0$. An easy calculation shows that $B ( 2 n ) \simeq B ( 2 n + 1 )$ for all prime numbers and all $n \geq 0$.
  
For a general spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028045.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028046.png" />, the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028047.png" /> is naturally isomorphic to the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028048.png" /> of homogeneous elements of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028049.png" /> in the Cartier–Dieudonné module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028050.png" /> of the Abelian [[Hopf algebra|Hopf algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028051.png" />. In fact, one way to construct the Brown–Gitler spectra is to note that the functor
+
For a general spectrum $X$ and $n \not \equiv \pm 1$ modulo $2 p$, the group $[ T ( n ) , X ]$ is naturally isomorphic to the group $D _ { n } H_{*} \Omega ^ { \infty } X$ of homogeneous elements of degree $n$ in the Cartier–Dieudonné module $D _{*} H _{*} \Omega ^ { \infty } X$ of the Abelian [[Hopf algebra|Hopf algebra]] $H_{ *} \Omega ^ { \infty } X$. In fact, one way to construct the Brown–Gitler spectra is to note that the functor
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028052.png" /></td> </tr></table>
+
\begin{equation*} X \mapsto D _ { 2n }  H *\Omega X \end{equation*}
  
is the degree-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028053.png" /> group of an extraordinary homology theory; then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028054.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028055.png" />-completion of the representing spectrum. See [[#References|[a6]]]. This can be greatly, but not completely, destabilized. See [[#References|[a7]]].
+
is the degree-$2 n$ group of an extraordinary homology theory; then $B ( 2 n )$ is the $p$-completion of the representing spectrum. See [[#References|[a6]]]. This can be greatly, but not completely, destabilized. See [[#References|[a7]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.H. Brown Jr.,  S. Gitler,  "A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra"  ''Topology'' , '''12'''  (1973)  pp. 283–295</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E.H. Brown Jr.,  F.P. Peterson,  "A universal space for normal bundles of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028056.png" />-manifolds"  ''Comment. Math. Helv.'' , '''54''' :  3  (1979)  pp. 405–430</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  G. Carlsson,  "G.B. Segal's Burnside ring conjecture for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028057.png" />"  ''Topology'' , '''22'''  (1983)  pp. 83–103</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.L. Cohen,  "Odd primary infinite families in stable homotopy theory"  ''Memoirs Amer. Math. Soc.'' , '''30''' :  242  (1981)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  R.L. Cohen,  "The immersion conjecture for differentiable manifolds"  ''Ann. of Math. (2)'' , '''122''' :  2  (1985)  pp. 237–328</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  P. Goerss,  J. Lannes,  F. Morel,  "Hopf algebras, Witt vectors, and Brown–Gitler spectra" , ''Algebraic Topology (Oaxtepec, 1991)'' , ''Contemp. Math.'' , '''146''' , Amer. Math. Soc.  (1993)  pp. 111–128</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  P. Goerss,  J. Lannes,  F. Morel,  "Vecteurs de Witt non-commutatifs et représentabilité de l'homologie modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028058.png" />"  ''Invent. Math.'' , '''108''' :  1  (1992)  pp. 163–227</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  J. Lannes,  "Sur les espaces fonctionnels dont la source est le classifiant d'un <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028059.png" />-groupe abélien élémentaire"  ''IHES Publ. Math.'' , '''75'''  (1992)  pp. 135–244</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  M. Mahowald,  "A new infinite family in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028060.png" />"  ''Topology'' , '''16''' :  3  (1977)  pp. 249–256</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  H. Miller,  "The Sullivan conjecture on maps from classifying spaces"  ''Ann. of Math. (2)'' , '''120''' :  1  (1984)  pp. 39–87</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  E.H. Brown Jr.,  S. Gitler,  "A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra"  ''Topology'' , '''12'''  (1973)  pp. 283–295</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  E.H. Brown Jr.,  F.P. Peterson,  "A universal space for normal bundles of $n$-manifolds"  ''Comment. Math. Helv.'' , '''54''' :  3  (1979)  pp. 405–430</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  G. Carlsson,  "G.B. Segal's Burnside ring conjecture for $( \mathbf{Z} / 2 ) ^ { k }$"  ''Topology'' , '''22'''  (1983)  pp. 83–103</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  R.L. Cohen,  "Odd primary infinite families in stable homotopy theory"  ''Memoirs Amer. Math. Soc.'' , '''30''' :  242  (1981)</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  R.L. Cohen,  "The immersion conjecture for differentiable manifolds"  ''Ann. of Math. (2)'' , '''122''' :  2  (1985)  pp. 237–328</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  P. Goerss,  J. Lannes,  F. Morel,  "Hopf algebras, Witt vectors, and Brown–Gitler spectra" , ''Algebraic Topology (Oaxtepec, 1991)'' , ''Contemp. Math.'' , '''146''' , Amer. Math. Soc.  (1993)  pp. 111–128</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  P. Goerss,  J. Lannes,  F. Morel,  "Vecteurs de Witt non-commutatifs et représentabilité de l'homologie modulo $p$"  ''Invent. Math.'' , '''108''' :  1  (1992)  pp. 163–227</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  J. Lannes,  "Sur les espaces fonctionnels dont la source est le classifiant d'un $p$-groupe abélien élémentaire"  ''IHES Publ. Math.'' , '''75'''  (1992)  pp. 135–244</td></tr>
 +
<tr><td valign="top">[a9]</td> <td valign="top">  M. Mahowald,  "A new infinite family in ${} _ { 2 } \pi _ { * } ^ { s }$"  ''Topology'' , '''16''' :  3  (1977)  pp. 249–256. {{ZBL|0357.55020}}</td></tr>
 +
<tr><td valign="top">[a10]</td> <td valign="top">  H. Miller,  "The Sullivan conjecture on maps from classifying spaces"  ''Ann. of Math. (2)'' , '''120''' :  1  (1984)  pp. 39–87</td></tr></table>

Latest revision as of 11:15, 20 January 2021

Spectra introduced by E.H. Brown Jr. and S. Gitler [a1] to study higher-order obstructions to immersions of manifolds (cf. also Immersion; Spectrum of spaces). They immediately found wide applicability in a variety of areas of homotopy theory, most notably in the stable homotopy groups of spheres ([a9] and [a4]), in studying homotopy classes of mappings out of various classifying spaces ([a3], [a10] and [a8]), and, as might be expected, in studying the immersion conjecture for manifolds ([a2] and [a5]).

The modulo-$p$ homology $H _{*} X = H_{ *} ( X , {\bf Z} / p {\bf Z} )$ comes equipped with a natural right action of the Steenrod algebra $\mathcal{A}$ which is unstable: at the prime $2$, for example, this means that

\begin{equation*} 0 = \text{Sq} ^ { i } : H _ { n } X \rightarrow H _ { n - i } X , 2 i > n. \end{equation*}

Write $\mathcal{U}_{*}$ for the category of all unstable right modules over $\mathcal{A}$. This category has enough projective objects; indeed, there is an object $G ( n )$, $n \geq 0$, of $\mathcal{U}_{*}$ and a natural isomorphism

\begin{equation*} \operatorname{Hom}_{\cal U_*}( G ( n ) , M ) \cong M _ { n }, \end{equation*}

where $M _ { n }$ is the vector spaces of elements of degree $n$ in $M$. The module $G ( n )$ can be explicitly calculated. For example, if $p = 2$ and $x _ { n } \in G ( n )_{n}$ is the universal class, then the evaluation mapping $\mathcal A \rightarrow G ( n )$ sending $\theta$ to $x _ { n } \theta$ defines an isomorphism

\begin{equation*} \Sigma ^ { n } \mathcal{A} / \{ Sq ^ { i } : 2 i > n \} \mathcal{A} \cong G ( n ). \end{equation*}

These are the dual Brown–Gitler modules.

This pleasant bit of algebra can be only partly reproduced in algebraic topology. For example, for general $n$ there is no space whose (reduced) homology is $G ( n )$; specifically, if $p = 2$, the module $G ( 8 )$ cannot support the structure of an unstable co-algebra over the Steenrod algebra. However, after stabilizing, this objection does not apply and the following result from [a1], [a4], [a6] holds: There is a unique $p$-complete spectrum $T ( n )$ so that $H_{*} T ( n ) \cong G ( n )$ and for all pointed CW-complexes $Z$, the mapping

\begin{equation*} [ T ( n ) , \Sigma ^ { \infty } Z ] \rightarrow \overline { H } _ { n } Z \end{equation*}

sending $f$ to $f * ( x _ { n } )$ is surjective. Here, $\sum ^ { \infty } Z$ is the suspension spectrum of $Z$, the symbol $[ \cdot , \cdot ]$ denotes stable homotopy classes of mappings, and $\overline { H }$ is reduced homology. The spectra $T ( n )$ are the dual Brown–Gitler spectra. The Brown–Gitler spectra themselves can be obtained by the formula

\begin{equation*} B ( n ) = \Sigma ^ { n } D T ( n ), \end{equation*}

where $D$ denotes the Spanier–Whitehead duality functor. The suspension factor is a normalization introduced to put the bottom cohomology class of $B ( n )$ in degree $0$. An easy calculation shows that $B ( 2 n ) \simeq B ( 2 n + 1 )$ for all prime numbers and all $n \geq 0$.

For a general spectrum $X$ and $n \not \equiv \pm 1$ modulo $2 p$, the group $[ T ( n ) , X ]$ is naturally isomorphic to the group $D _ { n } H_{*} \Omega ^ { \infty } X$ of homogeneous elements of degree $n$ in the Cartier–Dieudonné module $D _{*} H _{*} \Omega ^ { \infty } X$ of the Abelian Hopf algebra $H_{ *} \Omega ^ { \infty } X$. In fact, one way to construct the Brown–Gitler spectra is to note that the functor

\begin{equation*} X \mapsto D _ { 2n } H *\Omega X \end{equation*}

is the degree-$2 n$ group of an extraordinary homology theory; then $B ( 2 n )$ is the $p$-completion of the representing spectrum. See [a6]. This can be greatly, but not completely, destabilized. See [a7].

References

[a1] E.H. Brown Jr., S. Gitler, "A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra" Topology , 12 (1973) pp. 283–295
[a2] E.H. Brown Jr., F.P. Peterson, "A universal space for normal bundles of $n$-manifolds" Comment. Math. Helv. , 54 : 3 (1979) pp. 405–430
[a3] G. Carlsson, "G.B. Segal's Burnside ring conjecture for $( \mathbf{Z} / 2 ) ^ { k }$" Topology , 22 (1983) pp. 83–103
[a4] R.L. Cohen, "Odd primary infinite families in stable homotopy theory" Memoirs Amer. Math. Soc. , 30 : 242 (1981)
[a5] R.L. Cohen, "The immersion conjecture for differentiable manifolds" Ann. of Math. (2) , 122 : 2 (1985) pp. 237–328
[a6] P. Goerss, J. Lannes, F. Morel, "Hopf algebras, Witt vectors, and Brown–Gitler spectra" , Algebraic Topology (Oaxtepec, 1991) , Contemp. Math. , 146 , Amer. Math. Soc. (1993) pp. 111–128
[a7] P. Goerss, J. Lannes, F. Morel, "Vecteurs de Witt non-commutatifs et représentabilité de l'homologie modulo $p$" Invent. Math. , 108 : 1 (1992) pp. 163–227
[a8] J. Lannes, "Sur les espaces fonctionnels dont la source est le classifiant d'un $p$-groupe abélien élémentaire" IHES Publ. Math. , 75 (1992) pp. 135–244
[a9] M. Mahowald, "A new infinite family in ${} _ { 2 } \pi _ { * } ^ { s }$" Topology , 16 : 3 (1977) pp. 249–256. Zbl 0357.55020
[a10] H. Miller, "The Sullivan conjecture on maps from classifying spaces" Ann. of Math. (2) , 120 : 1 (1984) pp. 39–87
How to Cite This Entry:
Brown-Gitler spectra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Brown-Gitler_spectra&oldid=22197
This article was adapted from an original article by Paul Goerss (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article