Namespaces
Variants
Actions

Branching processes, regularity of

From Encyclopedia of Mathematics
Revision as of 06:29, 30 May 2020 by Ulf Rehmann (talk | contribs) (tex encoded by computer)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


2020 Mathematics Subject Classification: Primary: 60J80 [MSN][ZBL]

A property of branching processes ensuring that the number of particles at any moment of time is finite. The problem of the regularity of a branching process is usually reduced to the problem of uniqueness of the solution of some differential or integral equation. For instance, in a continuous-time branching process the differential equation

$$ \frac{\partial F (t; s) }{\partial t } = \ f (F (t; s)) $$

with the initial condition $ F(0; s) = s $ has a unique solution if and only if, for any $ \epsilon > 0 $, the integral

$$ \int\limits _ {1 - \epsilon } ^ { 1 } { \frac{dx}{f (x) } } $$

is divergent. In the branching Bellman–Harris process the generating function $ F(t; s) $ of the number of particles is the solution of the non-linear integral equation

$$ \tag{* } F (t; s) = \ \int\limits _ { 0 } ^ { t } h (F (t - u; s)) dG (u) + s (1 - G (t)), $$

where $ G(t) $ is the distribution function of the lifetimes of particles and $ h(t) $ is the generating function of the number of daughter particles ( "direct descendants" ) of a single particle. If, for given $ t _ {0} , c _ {1} , c _ {2} > 0 $ and an integer $ n \geq 1 $, the inequalities

$$ c _ {1} t ^ {n} \leq G (t) \leq c _ {2} t ^ {n} $$

are valid for all $ 0 \leq t \leq t _ {0} $, the solution of equation (*) is unique if and only if the equation

$$ \frac{d ^ {n} \phi }{dt ^ {n} } = \ h ( \phi ) - 1 $$

with initial conditions

$$ \phi (0) = 1,\ \ \phi ^ {(r)} (0) = 0,\ r = 1 \dots n - 1, $$

has a unique solution

$$ 0 \leq \phi (t) \leq 1. $$

For a branching process described by equation (*) to be regular, it is necessary and sufficient for the integral

$$ \int\limits _ { 0 } ^ \epsilon { \frac{dx}{x ^ {1-1/n } (1-h(1-x)) ^ {1/n} } } $$

to diverge for any $ \epsilon > 0 $.

References

[S] B.A. Sewastjanow, "Verzweigungsprozesse" , Akad. Wissenschaft. DDR (1974) (Translated from Russian) MR0408018 Zbl 0291.60039

Comments

Additional references can be found in the article Branching process.

How to Cite This Entry:
Branching processes, regularity of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Branching_processes,_regularity_of&oldid=46156
This article was adapted from an original article by B.A. Sevast'yanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article