Namespaces
Variants
Actions

Branching process with immigration

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


2020 Mathematics Subject Classification: Primary: 60J80 [MSN][ZBL]

A model of a branching process (discrete-time or continuous-time, with one or several types of particles, etc.) in which new particles may appear not only as the products of division of the original particles, but also as a result of immigration from some "external source" . For instance, let

$$ X _ {t,i } , Y _ {t} ,\ t = 0, 1 ,\dots ; \ i = 1, 2 \dots $$

be independent random variables with generating functions

$$ F (s) = \ \sum _ {k = 0 } ^ \infty {\mathsf P} \{ X _ {t,i } = k \} s ^ {k} , $$

$$ G (s) = \sum _ {k = 0 } ^ \infty {\mathsf P} \{ Y _ {t} = k \} s ^ {k} , $$

respectively; the branching Galton–Watson process with immigration may be defined by the relations $ \mu (0) = 0 $, where $ \mu (t) $ is the number of particles and

$$ \mu (t + 1) = \ X _ {t,1 } + \dots + X _ {t, \mu (t) } + Y _ {t} ,\ \ t=0, 1 ,\dots . $$

Here, the variable $ X _ {t,i} $ is interpreted as the number of daughter particles of the $ i $- th particle of the $ t $- th generation, while the variable $ Y _ {t} $ is interpreted as the number of the particles which have immigrated into the $ t $- th generation. The generating functions

$$ H _ {t} (s) = \ {\mathsf E} \{ s ^ {\mu (t) } \mid \mu (0) = 0 \} $$

are given by the recurrence relations

$$ H _ {0} (s) = 1,\ \ H _ {t + 1 } (s) = \ G (s) H _ {t} (F (s)). $$

The Markov chain $ \mu (t) $ corresponding to the Galton–Watson branching process with immigration is recurrent if $ {\mathsf E} X _ {t,i} < 1 $ and $ {\mathsf E} \mathop{\rm ln} (1 + Y _ {t} ) < \infty $ or $ {\mathsf E} X _ {t,i} = 1 $ and $ B = {\mathsf D} X _ {t,i} > 2C = 2 {\mathsf E} Y _ {t} $, and is transient if $ {\mathsf E} X _ {t,i} = 1 $ and $ B < 2C $ or $ {\mathsf E} X _ {t,i} > 1 $. For the Markov chain $ \mu (t) $ to be ergodic, i.e. for the limits

$$ \lim\limits _ {t \rightarrow \infty } \ {\mathsf P} \{ \mu (t) = k \} = p _ {k} $$

to exist and to satisfy

$$ \sum _ {k = 0 } ^ \infty p _ {k} = 1, $$

it is necessary and sufficient [FW] that

$$ \int\limits _ { 0 } ^ { 1 } \frac{1 - G (s) }{F (s) - s } \ ds < \infty . $$

This condition is met, in particular, if $ {\mathsf E} X _ {t,i} < 1 $ and $ {\mathsf E} \mathop{\rm ln} (1 + Y _ {t} ) < \infty $. If $ {\mathsf E} X _ {t,i} = 1 $, $ B > 0 $, $ C < \infty $, then [S]

$$ \lim\limits _ {t \rightarrow \infty } {\mathsf P} \left \{ \frac{2 \mu (t) }{Bt } \leq x \right \} = \ { \frac{1}{\Gamma (2CB ^ {-1} ) } } \int\limits _ { 0 } ^ { x } y ^ {2CB ^ {-1 } -1 } e ^ {-y} dy,\ x \geq 0. $$

If $ A = {\mathsf E} X _ {t,i} > 1 $ and $ {\mathsf E} \mathop{\rm ln} (1 + Y _ {t} ) < \infty $, then there exists [S2] a sequence of numbers $ c _ {t} \downarrow 0 $, $ c _ {t} / c _ {t+1} \rightarrow A $, such that

$$ {\mathsf P} \left \{ \lim\limits _ {t \rightarrow \infty } \ c _ {t} \mu (t) \ \textrm{ exists } \textrm{ and } \ \textrm{ is } \textrm{ positive } \right \} = 1. $$

In branching processes with immigration in which the immigration takes place at $ \mu (t) = 0 $ only, i.e.

$$ \mu (t+1) = X _ {t,1} + \dots + X _ {t, \mu (t) } + \delta _ {0, \mu (t) } Y _ {t} ,\ t=0, 1 \dots $$

where $ \delta _ {ij} $ is the Kronecker symbol, the following relation is valid if $ {\mathsf E} X _ {t,i} = 1 $, $ 1 < {\mathsf E} X _ {t,i} ^ { 2 } < \infty $ and $ 0 < {\mathsf E} Y _ {t} < \infty $:

$$ \lim\limits _ {t \rightarrow \infty } \ {\mathsf P} \left \{ \frac{ \mathop{\rm ln} (1 + \mu (t)) }{ \mathop{\rm ln} t } \leq x \right \} = x,\ 0 \leq x \leq 1. $$

References

[Z] A.M. Zubkov, "Life-like periods of a branching process with immigration" Theory Probab. Appl. , 17 : 1 (1972) pp. 174–183 Teor. Veroyatnost. i Primenen. , 17 : 1 (1972) pp. 179–188 MR0300351 Zbl 0267.60084
[P] A.G. Pakes, "Further results on the critical Galton–Watson process with immigration" J. Austral. Math. Soc. , 13 : 3 (1972) pp. 277–290 MR0312585 Zbl 0235.60078
[FW] J.H. Foster, J.A. Williamson, "Limit theorems for the Galton–Watson process with time-dependent immigration" Z. Wahrsch. Verw. Geb. , 20 (1971) pp. 227–235 MR0305494 Zbl 0219.60069 Zbl 0212.19702
[S] E. Seneta, "An explicit limit theorem for the critical Galton–Watson process with immigration" J. Roy. Statist. Soc. Ser. B , 32 : 1 (1970) pp. 149–152 MR0266320 Zbl 0198.52002
[S2] E. Seneta, "On the supercritical Galton–Watson process with immigration" Math. Biosci. , 7 (1970) pp. 9–14 MR0270460 Zbl 0209.48804
[F] J.H. Foster, "A limit theorem for a branching process with state-dependent immigration" Ann. of Math. Statist. , 42 : 5 (1971) pp. 1773–1776 MR0348854 Zbl 0245.60063

Comments

Additional references may be found in the article Branching process.

How to Cite This Entry:
Branching process with immigration. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Branching_process_with_immigration&oldid=46155
This article was adapted from an original article by A.M. Zubkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article